SISER: Semantic-Infused Selective Graph Reasoning for Fact Verification
Eunhwan Park, Jong-Hyeon Lee, DongHyeon Jeon, Seonhoon Kim, Inho Kang, Seung-Hoon Na
Abstract
This study proposes Semantic-Infused SElective Graph Reasoning (SISER) for fact verification, which newly presents semantic-level graph reasoning and injects its reasoning-enhanced representation into other types of graph-based and sequence-based reasoning methods. SISER combines three reasoning types: 1) semantic-level graph reasoning, which uses a semantic graph from evidence sentences, whose nodes are elements of a triple – <Subject, Verb, Object>, 2) “semantic-infused” sentence-level “selective” graph reasoning, which combine semantic-level and sentence-level representations and perform graph reasoning in a selective manner using the node selection mechanism, and 3) sequence reasoning, which concatenates all evidence sentences and performs attention-based reasoning. Experiment results on a large-scale dataset for Fact Extraction and VERification (FEVER) show that SISER outperforms the previous graph-based approaches and achieves state-of-the-art performance.- Anthology ID:
- 2022.coling-1.117
- Volume:
- Proceedings of the 29th International Conference on Computational Linguistics
- Month:
- October
- Year:
- 2022
- Address:
- Gyeongju, Republic of Korea
- Editors:
- Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, Seung-Hoon Na
- Venue:
- COLING
- SIG:
- Publisher:
- International Committee on Computational Linguistics
- Note:
- Pages:
- 1367–1378
- Language:
- URL:
- https://aclanthology.org/2022.coling-1.117
- DOI:
- Bibkey:
- Cite (ACL):
- Eunhwan Park, Jong-Hyeon Lee, DongHyeon Jeon, Seonhoon Kim, Inho Kang, and Seung-Hoon Na. 2022. SISER: Semantic-Infused Selective Graph Reasoning for Fact Verification. In Proceedings of the 29th International Conference on Computational Linguistics, pages 1367–1378, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
- Cite (Informal):
- SISER: Semantic-Infused Selective Graph Reasoning for Fact Verification (Park et al., COLING 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.coling-1.117.pdf
- Data
- FEVER
Export citation
@inproceedings{park-etal-2022-siser, title = "{SISER}: Semantic-Infused Selective Graph Reasoning for Fact Verification", author = "Park, Eunhwan and Lee, Jong-Hyeon and Jeon, DongHyeon and Kim, Seonhoon and Kang, Inho and Na, Seung-Hoon", editor = "Calzolari, Nicoletta and Huang, Chu-Ren and Kim, Hansaem and Pustejovsky, James and Wanner, Leo and Choi, Key-Sun and Ryu, Pum-Mo and Chen, Hsin-Hsi and Donatelli, Lucia and Ji, Heng and Kurohashi, Sadao and Paggio, Patrizia and Xue, Nianwen and Kim, Seokhwan and Hahm, Younggyun and He, Zhong and Lee, Tony Kyungil and Santus, Enrico and Bond, Francis and Na, Seung-Hoon", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics", url = "https://aclanthology.org/2022.coling-1.117", pages = "1367--1378", abstract = "This study proposes \textbf{S}emantic-\textbf{I}nfused \textbf{SE}lective Graph \textbf{R}easoning (SISER) for fact verification, which newly presents semantic-level graph reasoning and injects its reasoning-enhanced representation into other types of graph-based and sequence-based reasoning methods. SISER combines three reasoning types: 1) \textit{semantic}-level graph reasoning, which uses a semantic graph from evidence sentences, whose nodes are elements of a triple {--} {\textless}Subject, Verb, Object{\textgreater}, 2) {``}semantic-infused{''} \textit{sentence}-level {``}selective{''} graph reasoning, which combine semantic-level and sentence-level representations and perform graph reasoning in a selective manner using the node selection mechanism, and 3) \textit{sequence} reasoning, which concatenates all evidence sentences and performs attention-based reasoning. Experiment results on a large-scale dataset for Fact Extraction and VERification (FEVER) show that SISER outperforms the previous graph-based approaches and achieves state-of-the-art performance.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="park-etal-2022-siser"> <titleInfo> <title>SISER: Semantic-Infused Selective Graph Reasoning for Fact Verification</title> </titleInfo> <name type="personal"> <namePart type="given">Eunhwan</namePart> <namePart type="family">Park</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Jong-Hyeon</namePart> <namePart type="family">Lee</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">DongHyeon</namePart> <namePart type="family">Jeon</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seonhoon</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Inho</namePart> <namePart type="family">Kang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seung-Hoon</namePart> <namePart type="family">Na</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2022-10</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 29th International Conference on Computational Linguistics</title> </titleInfo> <name type="personal"> <namePart type="given">Nicoletta</namePart> <namePart type="family">Calzolari</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chu-Ren</namePart> <namePart type="family">Huang</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hansaem</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">James</namePart> <namePart type="family">Pustejovsky</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Leo</namePart> <namePart type="family">Wanner</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Key-Sun</namePart> <namePart type="family">Choi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pum-Mo</namePart> <namePart type="family">Ryu</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hsin-Hsi</namePart> <namePart type="family">Chen</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lucia</namePart> <namePart type="family">Donatelli</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Heng</namePart> <namePart type="family">Ji</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sadao</namePart> <namePart type="family">Kurohashi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Patrizia</namePart> <namePart type="family">Paggio</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nianwen</namePart> <namePart type="family">Xue</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seokhwan</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Younggyun</namePart> <namePart type="family">Hahm</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhong</namePart> <namePart type="family">He</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tony</namePart> <namePart type="given">Kyungil</namePart> <namePart type="family">Lee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Enrico</namePart> <namePart type="family">Santus</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Francis</namePart> <namePart type="family">Bond</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seung-Hoon</namePart> <namePart type="family">Na</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>International Committee on Computational Linguistics</publisher> <place> <placeTerm type="text">Gyeongju, Republic of Korea</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>This study proposes Semantic-Infused SElective Graph Reasoning (SISER) for fact verification, which newly presents semantic-level graph reasoning and injects its reasoning-enhanced representation into other types of graph-based and sequence-based reasoning methods. SISER combines three reasoning types: 1) semantic-level graph reasoning, which uses a semantic graph from evidence sentences, whose nodes are elements of a triple – \textlessSubject, Verb, Object\textgreater, 2) “semantic-infused” sentence-level “selective” graph reasoning, which combine semantic-level and sentence-level representations and perform graph reasoning in a selective manner using the node selection mechanism, and 3) sequence reasoning, which concatenates all evidence sentences and performs attention-based reasoning. Experiment results on a large-scale dataset for Fact Extraction and VERification (FEVER) show that SISER outperforms the previous graph-based approaches and achieves state-of-the-art performance.</abstract> <identifier type="citekey">park-etal-2022-siser</identifier> <location> <url>https://aclanthology.org/2022.coling-1.117</url> </location> <part> <date>2022-10</date> <extent unit="page"> <start>1367</start> <end>1378</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T SISER: Semantic-Infused Selective Graph Reasoning for Fact Verification %A Park, Eunhwan %A Lee, Jong-Hyeon %A Jeon, DongHyeon %A Kim, Seonhoon %A Kang, Inho %A Na, Seung-Hoon %Y Calzolari, Nicoletta %Y Huang, Chu-Ren %Y Kim, Hansaem %Y Pustejovsky, James %Y Wanner, Leo %Y Choi, Key-Sun %Y Ryu, Pum-Mo %Y Chen, Hsin-Hsi %Y Donatelli, Lucia %Y Ji, Heng %Y Kurohashi, Sadao %Y Paggio, Patrizia %Y Xue, Nianwen %Y Kim, Seokhwan %Y Hahm, Younggyun %Y He, Zhong %Y Lee, Tony Kyungil %Y Santus, Enrico %Y Bond, Francis %Y Na, Seung-Hoon %S Proceedings of the 29th International Conference on Computational Linguistics %D 2022 %8 October %I International Committee on Computational Linguistics %C Gyeongju, Republic of Korea %F park-etal-2022-siser %X This study proposes Semantic-Infused SElective Graph Reasoning (SISER) for fact verification, which newly presents semantic-level graph reasoning and injects its reasoning-enhanced representation into other types of graph-based and sequence-based reasoning methods. SISER combines three reasoning types: 1) semantic-level graph reasoning, which uses a semantic graph from evidence sentences, whose nodes are elements of a triple – \textlessSubject, Verb, Object\textgreater, 2) “semantic-infused” sentence-level “selective” graph reasoning, which combine semantic-level and sentence-level representations and perform graph reasoning in a selective manner using the node selection mechanism, and 3) sequence reasoning, which concatenates all evidence sentences and performs attention-based reasoning. Experiment results on a large-scale dataset for Fact Extraction and VERification (FEVER) show that SISER outperforms the previous graph-based approaches and achieves state-of-the-art performance. %U https://aclanthology.org/2022.coling-1.117 %P 1367-1378
Markdown (Informal)
[SISER: Semantic-Infused Selective Graph Reasoning for Fact Verification](https://aclanthology.org/2022.coling-1.117) (Park et al., COLING 2022)
- SISER: Semantic-Infused Selective Graph Reasoning for Fact Verification (Park et al., COLING 2022)
ACL
- Eunhwan Park, Jong-Hyeon Lee, DongHyeon Jeon, Seonhoon Kim, Inho Kang, and Seung-Hoon Na. 2022. SISER: Semantic-Infused Selective Graph Reasoning for Fact Verification. In Proceedings of the 29th International Conference on Computational Linguistics, pages 1367–1378, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.