Correct Metadata for
Abstract
Models of natural language understanding often rely on question answering and logical inference benchmark challenges to evaluate the performance of a system. While informative, such task-oriented evaluations do not assess the broader semantic abilities that humans have as part of their linguistic competence when speaking and interpreting language. We define competence-based (CB) question generation, and focus on queries over lexical semantic knowledge involving implicit argument and subevent structure of verbs. We present a method to generate such questions and a dataset of English cooking recipes we use for implementing the generation method. Our primary experiment shows that even large pretrained language models perform poorly on CB questions until they are provided with additional contextualized semantic information. The data and the source code is available at: https: //github.com/brandeis-llc/CompQG.- Anthology ID:
- 2022.coling-1.131
- Volume:
- Proceedings of the 29th International Conference on Computational Linguistics
- Month:
- October
- Year:
- 2022
- Address:
- Gyeongju, Republic of Korea
- Editors:
- Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, Seung-Hoon Na
- Venue:
- COLING
- SIG:
- Publisher:
- International Committee on Computational Linguistics
- Note:
- Pages:
- 1521–1533
- Language:
- URL:
- https://aclanthology.org/2022.coling-1.131/
- DOI:
- Bibkey:
- Cite (ACL):
- Jingxuan Tu, Kyeongmin Rim, and James Pustejovsky. 2022. Competence-based Question Generation. In Proceedings of the 29th International Conference on Computational Linguistics, pages 1521–1533, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
- Cite (Informal):
- Competence-based Question Generation (Tu et al., COLING 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.coling-1.131.pdf
Export citation
@inproceedings{tu-etal-2022-competence,
title = "Competence-based Question Generation",
author = "Tu, Jingxuan and
Rim, Kyeongmin and
Pustejovsky, James",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.131/",
pages = "1521--1533",
abstract = "Models of natural language understanding often rely on question answering and logical inference benchmark challenges to evaluate the performance of a system. While informative, such task-oriented evaluations do not assess the broader semantic abilities that humans have as part of their linguistic competence when speaking and interpreting language. We define competence-based (CB) question generation, and focus on queries over lexical semantic knowledge involving implicit argument and subevent structure of verbs. We present a method to generate such questions and a dataset of English cooking recipes we use for implementing the generation method. Our primary experiment shows that even large pretrained language models perform poorly on CB questions until they are provided with additional contextualized semantic information. The data and the source code is available at: https: //github.com/brandeis-llc/CompQG."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tu-etal-2022-competence">
<titleInfo>
<title>Competence-based Question Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jingxuan</namePart>
<namePart type="family">Tu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyeongmin</namePart>
<namePart type="family">Rim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chu-Ren</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansaem</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Key-Sun</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pum-Mo</namePart>
<namePart type="family">Ryu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Donatelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrizia</namePart>
<namePart type="family">Paggio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seokhwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Younggyun</namePart>
<namePart type="family">Hahm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhong</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tony</namePart>
<namePart type="given">Kyungil</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-Hoon</namePart>
<namePart type="family">Na</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Models of natural language understanding often rely on question answering and logical inference benchmark challenges to evaluate the performance of a system. While informative, such task-oriented evaluations do not assess the broader semantic abilities that humans have as part of their linguistic competence when speaking and interpreting language. We define competence-based (CB) question generation, and focus on queries over lexical semantic knowledge involving implicit argument and subevent structure of verbs. We present a method to generate such questions and a dataset of English cooking recipes we use for implementing the generation method. Our primary experiment shows that even large pretrained language models perform poorly on CB questions until they are provided with additional contextualized semantic information. The data and the source code is available at: https: //github.com/brandeis-llc/CompQG.</abstract>
<identifier type="citekey">tu-etal-2022-competence</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.131/</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>1521</start>
<end>1533</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings %T Competence-based Question Generation %A Tu, Jingxuan %A Rim, Kyeongmin %A Pustejovsky, James %Y Calzolari, Nicoletta %Y Huang, Chu-Ren %Y Kim, Hansaem %Y Pustejovsky, James %Y Wanner, Leo %Y Choi, Key-Sun %Y Ryu, Pum-Mo %Y Chen, Hsin-Hsi %Y Donatelli, Lucia %Y Ji, Heng %Y Kurohashi, Sadao %Y Paggio, Patrizia %Y Xue, Nianwen %Y Kim, Seokhwan %Y Hahm, Younggyun %Y He, Zhong %Y Lee, Tony Kyungil %Y Santus, Enrico %Y Bond, Francis %Y Na, Seung-Hoon %S Proceedings of the 29th International Conference on Computational Linguistics %D 2022 %8 October %I International Committee on Computational Linguistics %C Gyeongju, Republic of Korea %F tu-etal-2022-competence %X Models of natural language understanding often rely on question answering and logical inference benchmark challenges to evaluate the performance of a system. While informative, such task-oriented evaluations do not assess the broader semantic abilities that humans have as part of their linguistic competence when speaking and interpreting language. We define competence-based (CB) question generation, and focus on queries over lexical semantic knowledge involving implicit argument and subevent structure of verbs. We present a method to generate such questions and a dataset of English cooking recipes we use for implementing the generation method. Our primary experiment shows that even large pretrained language models perform poorly on CB questions until they are provided with additional contextualized semantic information. The data and the source code is available at: https: //github.com/brandeis-llc/CompQG. %U https://aclanthology.org/2022.coling-1.131/ %P 1521-1533
Markdown (Informal)
[Competence-based Question Generation](https://aclanthology.org/2022.coling-1.131/) (Tu et al., COLING 2022)
- Competence-based Question Generation (Tu et al., COLING 2022)
ACL
- Jingxuan Tu, Kyeongmin Rim, and James Pustejovsky. 2022. Competence-based Question Generation. In Proceedings of the 29th International Conference on Computational Linguistics, pages 1521–1533, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.