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Abstract
In this work, we explore the fitness of vari-
ous word/concept representations in analyzing
an experimental verbal fluency dataset provid-
ing human responses to 10 different category
enumeration tasks. Based on human annota-
tions of so-called clusters and switches between
sub-categories in the verbal fluency sequences,
we analyze whether lexical semantic knowl-
edge represented in word embedding spaces
(GloVe, fastText, ConceptNet, BERT) is suit-
able for detecting these conceptual clusters and
switches within and across different categories.
Our results indicate that ConceptNet embed-
dings, a distributional semantics method en-
riched with taxonomical relations, outperforms
other semantic representations by a large mar-
gin. Moreover, category-specific analysis sug-
gests that individual thresholds per category are
more suited for the analysis of clustering and
switching in particular embedding sub-space
instead of a one-fits-all cross-category solution.
The results point to interesting directions for fu-
ture work on probing word embedding models
on the verbal fluency task.

1 Introduction

The intrinsic evaluation of lexical knowledge rep-
resented in word embeddings has been of long-
standing interest in distributional semantics (Levy
et al., 2015; Hill et al., 2015), and remains an impor-
tant topic in work on interpreting large-scale black-
box language models (Pezzelle et al., 2021; Vulić
et al., 2020; Bommasani et al., 2020). While pre-
trained contextualized word representations have
recently been evaluated in many novel, (psycho-)
linguistically motivated probing tasks (Belinkov
and Glass, 2019; Ettinger, 2020; Finlayson et al.,
2021), the assessment of lexical semantics in word
embeddings still commonly focuses on traditional
benchmarks of human similarity annotations (Hill
et al., 2015), datasets of analogies (Drozd et al.,
2016) or taxonomic relations such as hypernymy
(Baroni and Lenci, 2011; Glavaš and Vulić, 2018).

In this paper, we conduct an evaluation of word
embeddings on the so-called verbal fluency task
(Shao et al., 2014), where participants are asked
to enumerate as many different words for a given
category as possible within a given time interval
(often 60 seconds), see Figure 1 for an example
response to the category hobby. The resulting
production data are a rich source of participants’
lexical-conceptual knowledge and typically show
an interesting clustering-switching pattern where
consecutive words either relate to the same sub-
category (handball, football,horseback riding as a
cluster for “sports” in Figure 1) or switch between
sub-categories (playing the guitar, model railway
as a switch from “music” to “playing” in Figure
1). Verbal fluency is a very well-known and widely
used cognitive performance test used in psychol-
ogy, neuro- and psycholinguistics where robust
and automatic methods for analyzing clustering-
switching patterns would be highly welcome (Kim
et al., 2019). Yet, to date, the analysis of verbal
fluency data received little attention in research
on computational semantics and word embeddings
(Pauselli et al., 2018; Linz et al., 2017; Pakhomov
and Hemmy, 2014). The study by Linz et al. (2017)
constitutes a noticeable exception, but is restricted
to verbal fluency responses to a single category
(“animals”) and does not rely on human annota-

1 Malen [painting] Schaffend [creating]
2 Lesen [reading] Lyrik [lyric]
3 Schreiben [writing] Lyrik [lyric]
4 Handball [handball] Sport [sport]
5 Fußball [football] Sport [sport]
6 Reiten [horseback riding] Sport [sport]
7 Musik [music] Musik [music]
8 Gitarre spielen [playing the guitar] Musik [music]
9 Modelleisenbahn [model railway] Spielen [playing]
10 Modellflugzeug [model airplane] Spielen [playing]
11 Sammeln [collecting] Sammeln [collecting]
12 Stricken [knitting] Schaffend [creating]
13 Sticken [embroidery] Schaffend [creating]
14 Nähen [sewing] Schaffend [creating]

Figure 1: Elicited word sequence and annotated sub-
categories from the hobbies domain
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tions of clusters and switches.

We base our study on a recently collected dataset
of German semantic verbal fluency responses that
provides a much wider range of categories than
previous studies and, additionally, has been ana-
lyzed in terms of clustering-switching patterns by
human judges.1 Importantly, our verbal fluency-
based evaluation of lexical knowledge in embed-
ding spaces rests on human production and judge-
ment data such that it may display different aspects
of taxonomical-conceptual knowledge as compared
to existing benchmarks for lexical relation predic-
tion derived from standard lexical resources (Ba-
roni and Lenci, 2011; Glavaš and Vulić, 2018). For
instance, the sub-categories for the “hobby” cat-
egory illustrated in Figure 1 could not be easily
retrieved from WordNet (Fellbaum, 2010) which,
curiously, lists “speleology” as the only direct hy-
ponym for the most common synset of “hobby”.

In the following, we compare different word em-
beddings for German (BERT-base, GloVe, Fasttext,
ConceptNet), investigating to what extent distances
in sub-spaces for categories like animals, body
parts, clothes reflect conceptual switches found in
verbal fluency data and to what extent it is pos-
sible to derive generic, cross-category distance
thresholds for the accurate detection of clusters
and switches. Our results indicate that ConceptNet
embeddings (Speer et al., 2017), a distributional
semantics method enriched with taxonomical rela-
tions, outperforms other semantic representations
by a large margin. On the other hand, merely tax-
onomical relations (as represented in GermaNet
Hamp and Feldweg (1997)) have significant but
weak correlations indicating that they are useful
as accompanying modalities to word embeddings.
Moreover, category-specific analysis suggests that
individual thresholds per category are more suited
for the analysis of clustering and switching in par-
ticular embedding sub-spaces instead of a one-fits-
all cross-category solution. A final experiment us-
ing simple clustering algorithms further corrobo-
rates the findings of the switching analyses. Over-
all, the results point to interesting directions for
future work on probing word embedding models
on the verbal fluency task.

1The dataset has not been released for ethical reasons, but
can be obtained under restricted conditions, upon request.

2 Background

The verbal fluency task is a very well-known neu-
ropsychological test that is used in clinical contexts
for diagnosing, e.g., neurodegenerative diseases as
well as in research on the cognitive processes un-
derlying lexical knowledge, access, retrieval and
executive control (Shao et al., 2014). Participants’
verbal fluency responses are typically scored in
terms of the number of correct words produced for
the category, whereas more fine-grained analyses
measure the amount of switching and clustering
in the word sequence (Troyer et al., 1997). The
semantic analysis of verbal fluency is commonly
addressed by the manually defined subcategories
for “animals” established in Troyer et al. (1997)’s
study, and extending these to other categories and
languages is a notorious challenge in psychology
(Kim et al., 2019). While there has been a lot of
interest in psychology in using word embeddings
for scoring semantic fluency (Benigni et al., 2021;
Qiu and Johns, 2021; Kim et al., 2019; Paula et al.,
2018; Linz et al., 2017), the task entered the radars
of the NLP community only recently. One potential
reason is that switching and clustering literature are
restricted to an extremely limited number of cate-
gories (such as animals, groceries), although there
are standardized tools that slightly extend the list
of the categories — e.g. the popular RWT (Regens-
burger Wortflüssigkeitstest) (Aschenbrenner et al.,
2000) includes five categories (animals, hobbies,
occupations, groceries and first names).

Quantitative analyses of verbal fluency data have
shown that enumeration speed and diversity within
a category are very category-dependent and that
categories can be more or less easy to enumerate.
For automatic methods that measure clustering and
switching, a first key step is to define appropriate
thresholds that pinpoint switch boundaries for sub-
category changes. Kim et al. (2019) investigate
different ways of automatically scoring semantic
fluency in English and Korean. Using a traditional
word2vec model (Mikolov et al., 2013), they pre-
dict categorical switches in collected sequences
if the predicted similarity between adjacent items
drops below a defined threshold, similar to the
approach in (Linz et al., 2017). Complementary
to this, the authors propose a model which aligns
words from fluency sequences with Wikipedia arti-
cles and predicts categorical switches when the in-
tersection of articles linked to adjacent words drops
below a certain threshold. Despite well-known dif-
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ferences between verbal fluency categories, the ro-
bustness and quality of these threshold-based meth-
ods across categories has, to the best of our knowl-
edge, not yet been analyzed. Moreover, from an
NLP perspective, traditional word2vec embeddings
can be expected to achieve a lower performance
in analyzing fine-grained conceptual relations as
compared to various more recent embedding meth-
ods that capture global word distributions as in
GloVe (Pennington et al., 2014), subword represen-
tations as in fastText (Bojanowski et al., 2017) or
integrated taxonomical knowledge as ConceptNET
Numberbatch (Egozi et al., 2011). Finally, con-
textualized embeddings from transformer language
models such as BERT (Devlin et al., 2019) consti-
tute to be an obvious method to explore. However,
to be used in such enumeration task, this dynamic
embedding method needs to be transformed into
static embeddings as detailed in Section 3.3. In
brief, the main contribution of this paper is to ex-
plore (i) state-of-the-art word embeddings for data
collected in an ongoing verbal fluency study in
wide categorical variety and (ii) the options for au-
tomatic scoring mechanisms for this broad range
of categories. To our knowledge, this is the first
(NLP-powered) study that systematically analyzes
verbal fluency task across such categorical vari-
ety through various semantic representations and
evaluation metrics together.

3 Experiments

3.1 Data

In this section, we describe the data collection, an-
notation and cleaning protocols. Detailed informa-
tion is provided in Appendix 7.1

Participants. 125 participants originally at-
tended the study, and 114 of them completed it.
After cleaning, 100 participants are included in
the following analysis (age: 18-63 (mean = 26),
gender: 87 female, 10 male, 3 non-binary).

Semantic Categories. The initial dataset con-
tains 24 conceptual categories. However, not all of
them resulted in sufficient data for statistical analy-
sis. Second, some categories like amphibians and
precious stones elicit a considerable amount of rare
words which do not exist in the vocabulary of the
methods used here. Furthermore, some categories
are very subjective and less related to linguistic
lexical knowledge as, e.g., first names). Therefore
based on qualitative and descriptive analysis, we

narrow the 24 categories down to those that have at
least 75 words produced by the probands, which are
available in all embeddings’ vocabulary list, and
with a minimum average of 5 words per annotated
subcategory. This leaves us with the following 10
categories: occupations, groceries, hobbies, ani-
mals, weapons, vessels, fabrics, countries, clothes,
body parts and insects. The entire list can be found
in Appendix 7.2.

Subcategory Annotations The words in verbal
fluency sequences have been manually annotated
with their subcategories (e.g. pets, birds, jungle an-
imals for the animal category) by five paid, trained
annotators, each annotating 4-5 of the 24 categories.
Based on this annotation, we are able to deter-
mine switches (positions where the left and right
word have a different subcategory and clusters (se-
quences of words with the same category).

Data Cleaning. We remove sequences that con-
tain less then 5 items, resulting in 960 sequences
in total. The words in the sequences were pro-
cessed using off-the-shelf NLP text processing
tools like; SpaCy Lemmatizer2, Compound Split-
ter3 and Spell Checker4 for German. Compound
words are generally common in German and the
vocabulary used by participants also frequently
contains compound words such as “Klavierspielen”
(piano playing), “Krankenpfleger” (health nurse),
“Fahrradfahren” (bike riding). Unfortunately, many
of the compounds do not exist in the vocabulary
of GloVe, ConceptNet, or GermaNet whereas fast-
Text and BERT embeddings can deal with out-of-
vocabulary tokens due to their sub-word tokeniza-
tion method. In order to address this discrepancy
for the non-subword methods, the Python com-
pound splitter package has been used for the words
not found in the vocabulary following the lemmati-
zation and spell-check. As a result, the compound
vector would be the average of the part vectors.

Table 1 presents basic statistics for word counts
and sub-category switch counts observed in the se-
quences within each category and across categories
(as global) following the method used by Kim et al.
(2019). This overview highlights the differences
in the characteristics of the categories: participants
enumerated almost 20 items on average for the ani-
mals and countries, and around or below 10 items
for fabrics, insects, and vessels. Correspondingly,

2
https://spacy.io/models/de

3
https://github.com/dtuggener/CharSplit

4
https://pypi.org/project/pyspellchecker/

https://spacy.io/models/de
https://github.com/dtuggener/CharSplit
https://pypi.org/project/pyspellchecker/
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switch counts for animals and hobbies are signifi-
cantly higher as compared to categories which are
less easy to enumerate.

3.2 Methods

We now introduce our automatic switch detection
methods, that we will evaluate on the human sub-
category annotations. The goal is to investigate
whether it is possible to determine a "one-fits-
all" metric that can generalize across various se-
mantic categories and to further explore category-
dependent characteristics that cause deviation from
the overall pattern.

In addition to comparing human-annotations
with the word/concept embedding methods (GloVe,
fastText, ConceptNet and BERT-base), we further
investigate how mere taxonomic relations (by em-
ploying GermaNet) perform on switch detection (i)
as a standalone method (Section 4.3) and (ii) as a
complementary source of information, combined
with embedding-based decisions (Section 4.4).

We utilize several metrics in order to test the
correlations between human annotations and em-
bedding representations. First, we compare the
the number of switches determined by the human
annotators against the aggregated similarity score
calculated for the pairs in the sequences (for each
method, Section 4.1). We consider several parame-
ters (mean, maximum, minimum and standard de-
viation) for our aggregation method. Since mean
values exhibit the highest correlation scores, we
select them as the suitable scoring metric for re-
porting.

Next, we try to detect switch boundaries (sub-
category changes) in sequences, using the similar-
ity scores between word pairs in the sequences.
To decide whether a given word pair marks a sub-
category switch, we apply the threshold cut-off
methods described in Kim et al. (2019). We test
two threshold variations: (i) Median threshold
and (ii) 25-Percentile (25P) threshold. A switch
boundary is marked where the cosine similarity be-
tween two adjacent words falls below the respective
threshold.

For the individual embedding methods, the bi-
nary threshold-based decisions whether pairs of
words mark switch boundaries or belong to the
same subcategory are then compared against the
human annotations using Cohen Kappas and Chi-
square statistics (using the scipy package5, Sec-

5
https://docs.scipy.org/doc/scipy/reference/stats.

tion 4.2). The median and 25P thresholds are cal-
culated per category as well as globally, by taking
all similarity values in the entire data into account.
The entire list of calculated thresholds can be found
in Appendix 7.3.

We complement our embedding-based analy-
ses with GermaNet (Hamp and Feldweg, 1997),
a lexical-semantic network for German that allows
for a rule-based, explainable analysis of the switch
boundaries. GermaNet groups nouns, verbs, and
adjectives into synsets and links these synsets with
lexical semantic relations (containing a total of
205K lexical units in 159K synsets). Using the
Python API for GermaNet (germanetpy6), we ex-
tract the lexical units and synsets for the word pairs
given their category.

We explore the following metrics for scoring
similarity between word pairs based on synset rela-
tions: (i) shortest path distance, (ii) path-based (PB)
similarity and (iii) information content (IC) based
similarity (Resnik, 1999; Leacock and Chodorow,
1998). The details of these metrics can be found in
the GermaNet website with a source code7. Path-
based relatedness measures compute the semantic
relatedness between two concepts based on the
shortest path between two synsets in the hyper-
nym relation. However, quantifying semantic dis-
tances merely based on length in the hypernym
relation is intuitively not a flawless concept (Jiang
and Conrath, 1997). The IC-based metric com-
bines the structural information in the hypernym
relation with the word frequencies (GermaNet raw
frequency lists). The relatedness of two synsets
is measured in terms of the information content
of the least common synset that is a hypernym
to both synsets. The word frequencies are used
to compute the information content, which scores
concepts from specific to general. If a very specific
synset is compared to a very general one, the re-
latedness score will be low. This makes IC-based
measures more suited for the similarity annotations.
The formulas of these measures are available in
Gurevych and Niederlich (2005). In the following,
we focus on the IC-based metric due to its superior
performance on our data. Detailed scores for all
three metrics are provided in Appendix 7.5.

html
6
https://pypi.org/project/germanetpy/

7
https://github.com/Germanet-sfs/

germanetTutorials
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Table 1: Basic statistics (Max, min, and average values of sequences and sub-category switches)

Categories Word Count in a Sequence Sub-category switch in a sequence Total Word Count Subcategory Count

animals Max: 30, Min: 5, Mean: 19.11 Max: 14.0, Min: 1.0, Mean: 7.8 1659 22
body parts Max: 31 , Min: 5 , Mean: 18.2 Max: 15.0, Min: 3.0 , Mean: 8.37 1527 8

clothes Max: 24, Min: 7, Mean: 16.5 Max: 13.0, Min: 3.0, Mean: 8.14 1434 15
countries Max: 36, Min: 10, Mean: 18.5 Max: 13.0, Min: .0, Mean: 4.6 1752 6

fabrics Max: 17, Min: 5, Mean: 7.8 Max: 8.0, Min: .0, Mean: 3.1 537 15
groceries Max: 25, Min: 6, Mean: 16.6 Max: 16.0, Min: 3.0, Mean: 9.3, 1520 14

hobbies Max: 22, Min: 5, Mean: 14.4 Max: 15.0, Min: .0, Mean: 7.7 1158 31
insects Max: 17, Min: 5, Mean: 9.8 Max: 11.0, Min: 2.0, Mean: 6.4 773 14

occupations Max: 17, Min: 5, Mean: 12.5 Max: 13.0, Min: 3.0, Mean: 8.3 964 19
vessels Max: 17, Min: 5, Mean: 10.1 Max: 12.0, Min: 1.0, Mean: 5.9 753 9
Global Max: 36, Min: 5, Mean: 13.9 Max: 14, Min: 0, Mean: 6.8 12077 153

3.3 Semantic Space Representations

As introduced before, we investigate GloVe (1.31M
vocab, 300 dimensional)8 and fastText (65B tokens,
20M vocab, 300 dim.)9 as general static word rep-
resentations for German. As a third method, we test
the ConceptNET Numberbatch word embeddings,
which are enriched by ConceptNet taxonomic rela-
tions (594K vocab, 300 dim.) (Speer et al., 2017).
Considering the task at hand, those relations might
facilitate the enumeration.

Furthermore, we include BERT embeddings as
one of the currently most popular models in NLP.
Here, one potential challenge is that sequences of
words in verbal fluency data differ substantially
from the context that these models are trained for.
Many layers of linguistic information like syntax
or morphology that transformers learn to represent
in their latent layers (Tenney et al., 2019) are not
instrumental for this task. In this respect, verbal
fluency data differs from most existing probing set-
ups which prompt language models with “regular”
linguistic inputs. Therefore, we convert contex-
tualized BERT embeddings (2,350M tokens, 31K
vocab, 512 dim.) to static word embeddings fol-
lowing the method explained in Bommasani et al.
(2020). For this, we sample 20 sentences from
the German Wikipedia 2 Corpus10 for each item
in our vocabulary, and compute their vectors using
the dbmdz/bert-base-german-cased model11. Af-
ter applying a pooling strategy, we end up with a
static/single representations for each word.

8
https://www.deepset.ai/german-word-embeddings

9
https://fasttext.cc/docs/en/crawl-vectors.html

10
https://github.com/GermanT5/wikipedia2corpus

11
https://huggingface.co/dbmdz/

bert-base-german-cased

4 Pairwise Switch Analysis

4.1 Switch Count - Similarity Score
Correlations

The correlation between the switch counts per
sequence (in total 960 sequences) and the mean
cosine similarity score of the sequences is ana-
lyzed using the Pearson Correlation coefficient
(scipy.stats.pearsonr12). Sequences with more
sub-category switches are expected to have lower
(mean) similarity scores. As illustrated in Table 2,
the negative correlation is strong for only some of
the categories such as animals, countries, groceries,
and insects. The switch counts for GloVe and
BERT embedding methods do not display convinc-
ing alignment with the human annotations, whereas
fastText and ConceptNet embeddings are more in
line with human decisions. This analysis shows
that despite some significant and strong correlated
categories, especially for the categories clothes,
fabrics, occupations and vessels, no correlation has
been observed indicating that the switch detection
methods applied in the following section based on
word embeddings might be challenging on these
categories.

Table 2: Pearson Correlation Analysis Results on Total
Switch Count and Mean Similarity Scores

Categories GloVe fastText ConceptNet BERT

animals –.17, n.s. –.25, p.<.05 –.24, p.<.05 –.07, n.s.
body parts –.19, n.s. .09, n.s. .23, p.<.05 .30, p.<.01
clothes .03, n.s. –.147, n.s. –.14, n.s. .04, n.s.
countries –.43, p.<.01 –.39, p.<.01 –.40, p.<.01 .02, n.s.
fabrics –.11, n.s. .01, n.s. –.19, n.s. .12, n.s.
groceries –.34, p.<.01 –.24, p. <.05 –.27, p.<.01 –.08, n.s.
hobbies –.144, n.s. .03, n.s. –.17, n.s. .058, n.s.
insects –.19, n.s. –.38, p.<.01 –.27, p.<.01 –.13, n.s.
occupations –.00, n.s. –.16, n.s. –.08, n.s. .058, n.s.
vessels .17, n.s. –.01, n.s. –.03, n.s. .06, n.s.

12
https://docs.scipy.org/doc/scipy/reference/stats.

html

https://www.deepset.ai/german-word-embeddings
https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/GermanT5/wikipedia2corpus
https://huggingface.co/dbmdz/bert-base-german-cased
https://huggingface.co/dbmdz/bert-base-german-cased
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html
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4.2 Embedding-based Switch Detection
As the previous metric returns mixed results, we
continue our analysis by turning the continuous
similarity scores into discrete switch boundaries.

Overall, switch detection based on 25-Percentile
thresholds seems to achieve significant correla-
tions with human annotations (Table 3). While
the correlations are weak for GloVe and BERT em-
beddings, fastText and especially ConceptNet are
correlated with the human annotation at various
strengths. Categories like animals, hobbies and
countries show stronger correlations, while less
common categories like vessels, fabrics, insects
achieve lower scores.

In addition to this, Table 4 presents the median
thresholds, which are more conservative by design.
The overall results confirm the category-dependent
variations. ConceptNet scores are closer to hu-
man scores in 8 of 9 categories, showing strong-
to-moderate correlations. Furthermore, the median
thresholds seem to be aligned better with the hu-
man annotations than the 25-Percentile thresholds
for this enumeration task. Similar to previous re-
sults, categories like vessels, and fabrics results in
less alignment for this metric as well.

Global threshold vs. category threshold. In
order to investigate how a global threshold com-
pares to category-dependent ones, we test the align-
ment scores of both kinds of thresholds to human-
annotations. On average, as illustrated in Figure 2,
category-dependent threshold decisions demon-
strates slightly better correlations with human an-
notations.The improvements are particularly evi-
dent with regard to some specific configurations:
BERT (avg = .02, max = .18 in insects), Con-
ceptNet (avg = .01, max = .15 in insects), fast-
Text (avg = .01, max = .11 in body parts), GloVe
(avg = .02, max = .10 in countries).

4.3 Taxonomy-based Switch Detection
Table 5 presents average shortest path and IC-based
similarity scores per category. Based on these
scores, median thresholds for each category are
calculated following the threshold cut-off method
explained in Section 3.2. In detecting sub-category
switches, IC-based similarity shows alignment with
the human annotations at various levels. The results
indicate considerable differences between the cate-
gories. For example, whereas high correlations are
observed for hobbies, body parts, animals, occupa-
tions and interestingly insects, the correlations are

Figure 2: Correlations between the automated scores
(Global- vs. Category-Thresholds) and human-
annotations — averaged for all methods

weaker for other categories like clothes or fabrics.

4.4 Integrated Switch Detection

To investigate the influence of taxonomic relations
in a more explicit way, we combined the decisions
on subcategory switch from each embedding model
with the decisions calculated using GermaNet IC-
based scores (after converting to switch sequences
using Median threshold). For each pair in a se-
quence, the combined metric predicts a switch if
there is a switch detected in either of the sequences.

Figure 3 shows the correlation patterns (against
human-annotated switch boundaries) across cate-
gories for each embedding method with (W+G)
and without (W) GermaNet integration. Despite
category-based significant differences between W
and W+G conditions, it is difficult to conclude
on an overall pattern that can explain the vari-
ations across categories. However, except Con-
ceptNet (avg = −.01, max = +.07, higher im-
provement for groceries, fabrics), the other repre-
sentation methods benefited from the inclusion of
GermaNet relations especially for some categories;
BERT (avg = +.11, max = +.19, high diff. in
body parts, vessels, fabrics, groceries), fastText
(avg = +.08, max = +.12, high diff. in fab-
rics), GloVe (avg = +.014, max = +.23, high
diff. in vessels, insects, fabrics, groceries). Thus,
the detection of switch boundaries for vessels and
fabrics benefited most from the combined metric,
which suggests that embedding models and lexi-
cal resources represent complementary aspects of
lexical knowledge for these categories. Moreover,
GloVe and BERT embeddings benefit more from
GermaNet-informed scores (W+G) than fastText
and ConceptNet, both for single categories and in
the global evaluation (the last item in the graph).
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Table 3: Interrater agreement between human annotations and 25-Percentile Thresholds for each embedding

Human-Annotated Data versus Embeddings’ 25-Percentile Threshold
Categories BERT GloVe ConceptNet fastText

animals κ: .07, Corr.: .08, p. <.01 κ: .17, Corr.: .18, p. <.01 κ: .42, Corr.: .46, p. <.01 κ: .28, Corr.: .31, p. <.01
body parts κ: .10 , Corr.: .12 ,p. <.01 κ: .29, Corr.: .32 , p. <.01 κ: .317, Corr.: .35, p. <.01 κ: .25, Corr.: .28 , p. <.01
clothes κ: .07, Corr.: .08, p. <.01 κ: .04, Corr.: .04, n.s. κ: .22, Corr.: .26, p. <.01 κ: .12, Corr.: .14, p. <.01
countries κ: .10, Corr.: .10, p. <.01 κ: .43, Corr.: .43, p. <.01 κ: .39, Corr.: .39, p. <.01 κ: .34, Corr.: .34, p. <.01
fabrics κ: .11, Corr.: .12, p. <.01 κ: –.08, Corr.: –.09, p. <.05 κ: .10, Corr.: .12, p. <.01 κ: .02, Corr.: .02, n.s.
groceries κ: .13, Corr.: .17, p. <.01 κ: .23, Corr.: .29, p. <.01 κ: .26, Corr.: .33, p. <.01 κ: .21, Corr.: .27, p. <.01
hobbies κ: .15, Corr.: .19, p. <.01 κ: .24, Corr.: .29, p. <.01 κ: .39, Corr.: .48, p. <.01 κ: .22, Corr.: .27, p. <.01
insects κ: .13, Corr.: .20, p. <.01 κ: .08, Corr.: .13, p. <.01 κ: .15, Corr.: .25, p. <.01 κ: .11, Corr.: .18, p. <.01
occupations κ: –.01, Corr.: –.02, n.s. κ: .09, Corr.: .13, p. <.01 κ: .17, Corr.: .25, p. <.01 κ: .15, Corr.: .22, p. <.01
vessels κ: –.06, Corr.: –.09, p. <.05 κ: .02, Corr.: .02, n.s. κ: .12, Corr.: .16, p. <.01 κ: .08, Corr.: .10, p. <.01

Table 4: Interrater agreement between human annotations and Median Thresholds for each embedding

Human-Annotated Data versus Embeddings’ Median Threshold
Categories BERT GloVe ConceptNet fastText

animals κ: .10, Corr.: .10, p. <.01 κ: .311, Corr.: .31, p. <.01 κ: .53, Corr.: .54, p. <.01 κ: .40, Corr.: .40, p. <.01
body parts κ: –.04 , Corr.: –.037 , n.s. κ: .41, Corr.: .41, p. <.01 κ: .24, Corr.: .24, p. <.01 κ: .38, Corr.: .38, p. <.01
clothes κ: .07, Corr.: .07, p. <.01 κ: .17, Corr.: .17, p. <.01 κ: .33, Corr.: .33, p. <.01 κ: .23, Corr.: .23, p. <.01
countries κ: .144, Corr.: .164, p. <.01 κ: .35, Corr.: .39, p. <.01 κ: .31, Corr.: .36, p. <.01 κ: .30, Corr.: .34, p. <.01
fabrics κ: .20, Corr.: .21, p. <.01 κ: –.08, Corr.: –.08, n.s. κ: .08, Corr.: .08, n.s. κ: .10, Corr.: .10, p. <.05
groceries κ: .17, Corr.: .18, p. <.01 κ: .34, Corr.: .34, p. <.01 κ: .33, Corr.: .34, p. <.01 κ: .40, Corr.: .41, p. <.01
hobbies κ: .17, Corr.: .17, p. <.01 κ: .37, Corr.: .37, p. <.01 κ: .61, Corr.: .61, p. <.01 κ: .39, Corr.: .39, p. <.01
insects κ: .24, Corr.: .27, p. <.01 κ: .23, Corr.: .26, p. <.01 κ: .40, Corr.: .45, p. <.01 κ: .29, Corr.: .33, p. <.01
occupations κ: .03, Corr.: .04, n.s. κ: .21, Corr.: .23, p. <.01 κ: .38, Corr.: .40, p. <.01 κ: .35, Corr.: .37, p. <.01
vessels κ: –.03, Corr.: –.03, n.s. κ: .03, Corr.: .03, n.s. κ: .13, Corr.: .13, p. <.01 κ: .15, Corr.: .15, p. <.01

Table 5: (left) GermaNet PB scores, (middle) IC-based
relatedness scores, (right) correlation scores between
threshold-based sequences and human annotations

Categories Shortest Path
Distance (Mean)

IC-Relatedness
Score (Mean)

IC-based Relatedness
(with median threshold)

animals 7.11 .27 Corr: –.27, p.<.01
body parts 5.99 .21 Corr: –.23, p.<.01

clothes 4.08 .31 Corr: –.06, p.<.01
countries 2.48 .23 Corr: –.03, n.s.

fabrics 5.48 .30 Corr: –.12, p.<.05
groceries 5.38 .26 Corr: –.05, p.<.01

hobbies 7.07 .11 Corr: –.44, p.<.01
insects 6.37 .37 Corr: –.23, p.<.01

occupations 7.61 .20 Corr: –.24, p.<.01
vessels 3.46 .26 Corr: –.21, p.<.01

ConceptNet and fastText scores with or without
GermaNet converge on similar values in the global
category.

4.5 Discussion

The results show that automatic prediction of
switches aligns best with human annotations when
using (i) ConceptNet , (ii) a median-based thresh-
old switch detection and (iii) category-specific
thresholds. Strong correlations have been achieved
for the hobbies, and animals, and moderate cor-
relations for the occupations, insects, groceries,
clothes, countries and body parts (revisiting Ta-

ble 4). Performance of automatic switch prediction
is worst on vessels and fabrics. This aligns with the
fact that these are the categories resulted with the
lowest word counts (see Table 1). The exception
here is insects with few item produced for this cate-
gory and subcategory boundaries well represented
in the embedding methods. We speculate that this
might be due to insects occurring in more defined
and narrow contexts in the training data, whereas
fabrics and vessels may occur in a wider range of
contexts. Furthermore, we obtain stronger align-
ment between automatic prediction and human an-
notation when taxonomic relations are included via
implicit co-learning (e.g. ConceptNet) or explicit
integration (e.g. joint metric in Section 4.4). Thus,
for this task, taxonomic relations are indispens-
able and should be part of the automatic scoring
mechanisms for better alignment with the human
annotations. The selection of threshold methods
for defining switch boundaries also plays an impor-
tant role for getting closer to human annotations.
25-percentile is statistically correlated for almost
all categories and representation methods, but over-
all at weak levels. Decisions based on Median
thresholds display stronger alignment, and increase
the correlations of all representation methods at a
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Figure 3: Correlations between the gold annotation and each embedding condition (with/out GermaNet taxonomy.

substantial degree.
The poor results using BERT embeddings could

originate from the discrepancy of the task to lan-
guage modeling, or the lack of training during the
conversion from contextualized to static word em-
beddings. The performance might be improved
by increasing the sample size. To train models
this large for obtaining static word embeddings
seems unreasonably expensive, both computation-
ally and ecologically – especially considering the
good performance of simpler approaches enriched
with taxonomic relations.

5 Clustering Analysis

The pairwise switch analysis revealed consider-
able differences between categories as well as
favourable results for ConceptNet as a semantic
representation. In the following, we report results
from an additional clustering-based analysis, in
which we take a more global perspective: Instead of
investigating adjacent items in fluency sequences,
we look at the global semantic organization of all
lexical items in the respective categories.

For each category c, we encode the assigned sub-
categories for individual items into sparse binary
vectors. This transformation is necessary for K-
Means clustering. This gives us a feature vector
with dimensions (nwordsc , nsubcatsc) for human an-
notations, where nwordsc is the number of lexical
items and nsubcatsc the number of subcategories in
the respective category. As simplified, lets assume
that we have only three subcategories. A word is
represented by the vector [1,0,0] if the word has
been assigned to subcategory 1 but not 2 and 3.

We then retrieve the same lexical items from the
semantic representations described in Section 3.3,
and use each of the feature vectors to fit a K-Means
clustering model. The k parameter is set depending
on the number of annotated subcategories, deter-

Figure 4: Adjusted Rand Index (ARI) scores for differ-
ent word embeddings & categories in the fluency data

mined as kc =
nsubcatsc

2 . This parameter reflects
the complexity of the domain, i.e., it should allow
a large number of clusters for categories with many
subcategories. However, there are a few highly
fine-grained categories (e.g., fabrics with 28 sub-
categories for 148 unique words). Therefore, we
scaled the value of k for all domains by a constant
value.

For evaluation, we rely on the Adjusted Rand
Index (ARI) (Hubert and Arabie, 1985; Steinley,
2004) for comparing the clusterings based on Con-
ceptNet, GloVe, fasttext and BERT with the re-
sults for annotated subcategories. We use the scikit-
learn13 library for both clustering and evaluation.

The scores reported in Table 6 and visualized
in Figure 4 confirm our previous findings: We see
large differences between the categories investi-
gated, with ConceptNet outperforming other se-
mantic representations. One noticeable exception
from this is the category countries, where GloVe
performs surprisingly well. As a possible expla-
nation, we suggest that for different countries the

13
https://scikit-learn.org/. For the detailed definition of

ARI, please visit https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.adjusted_rand_score.html

https://scikit-learn.org/
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_rand_score.html
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ConceptNet GloVe fastText BERT

animals 0.42 0.09 0.12 0.01
body parts 0.38 0.12 0.11 0.01
clothes 0.43 0.03 0.01 0.00
countries 0.37 0.77 0.05 0.10
fabrics 0.18 0.10 0.16 0.03
groceries 0.46 0.22 0.11 0.01
hobbies 0.27 0.10 0.17 0.02
insects 0.37 0.03 0.02 0.03
occupations 0.22 0.12 0.11 0.01
vessels 0.29 0.04 -0.02 0.00

Table 6: Adjusted Rand Index (ARI) scores for different
word embeddings & categories in the fluency data

textual context might be very informative. As it is
based on lexical co-occurrence, this might result in
GloVe representations fairly consistent with human
categorization.

6 Conclusion

In this paper, we have explored a range of seman-
tic spaces and switch detection methods for the
analysis of the verbal fluency data. To the best
of our knowledge, this is the first study that (i)
incorporates the taxonomic relations using NLP
techniques, (ii) explores a wide variety of semantic
categories (10 categories), and (iii) explores the
fitness of semantic representations in German for
this task.

NLP solutions so far are limited to typi-
cal/frequent categories like fruits and animals, leav-
ing the annotation of other categories to laborious
manual methods. To develop an automatic scoring
mechanism, in-depth analysis for less frequent cat-
egories is necessary. Our results revealed various
category-specific characteristics.

We showed that choosing individual threshold
strategies to detect switch boundaries is essential
and a "one-fits-all" solution (using a global thresh-
old) results in less aligned sequences. Still, it can
be kept as an option since the degradation is not
large for the easy to enumerate categories.

In addition to providing an another perspective to
analyze the verbal fluency data for psycholinguistic
research, this study also prepares the ground for in-
vestigating interesting NLP tasks, like subcategory
prediction/generation of the upcoming items. From
that perspective, Nighojkar et al. (2022) claims that
transformer-based language models perform better
on cognitive modeling (more specifically, on pre-
dicting the next items given a sequence) than the
static approaches. However, their evaluation does

not include a comparison to knowledge-enriched
models. Although their task differs from explor-
ing semantic spaces to detect category switches,
category-specific variations are observed from their
results regarding 5 categories (fruits, vegetables,
animals, supermarket items, tools, and foods).

Furthermore, applying mere taxonomic relations
using a synset taxonomy falls behind embedding
methods but proved to be instrumental as an ac-
companying information source, especially for the
hard to enumerate categories.

These results highlight that the task is more chal-
lenging than it seems, and we need to go beyond
out-of-the-box NLP approaches by understanding
the nature of these categories and the task. Fu-
ture studies aim to improve the integrated switch
detection method around the taxonomy-enriched
representations using additional modalities and
knowledge-graph enriched BERT models.
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between lexico-semantic relations with the special-
ization tensor model. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 181–187, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Iryna Gurevych and Hendrik Niederlich. 2005. Com-
puting semantic relatedness of germanet concepts.
In Sprachtechnologie, mobile Kommunikation und
linguistische Ressourcen: Proceedings of Workshop”
Applications of GermaNet II” at GLDV, pages 462–
474.

Birgit Hamp and Helmut Feldweg. 1997. GermaNet - a
lexical-semantic net for German. In Automatic Infor-
mation Extraction and Building of Lexical Semantic
Resources for NLP Applications.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
SimLex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Lawrence Hubert and Phipps Arabie. 1985. Comparing
partitions. Journal of classification, 2(1):193–218.

Jay J. Jiang and David W. Conrath. 1997. Semantic simi-
larity based on corpus statistics and lexical taxonomy.
In Proceedings of the 10th Research on Computa-
tional Linguistics International Conference, pages
19–33, Taipei, Taiwan. The Association for Computa-
tional Linguistics and Chinese Language Processing
(ACLCLP).

Najoung Kim, Jung-Ho Kim, Maria K. Wolters, Sarah E.
MacPherson, and Jong C. Park. 2019. Automatic
scoring of semantic fluency. Frontiers in Psychology,
10.

Claudia Leacock and Martin Chodorow. 1998. Com-
bining local context and wordnet similarity for word
sense identification. WordNet: An electronic lexical
database, 49(2):265–283.

Omer Levy, Steffen Remus, Chris Biemann, and Ido Da-
gan. 2015. Do supervised distributional methods re-
ally learn lexical inference relations? In Proceedings
of the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 970–976.

Nicklas Linz, Johannes Tröger, Jan Alexandersson, and
Alexandra Konig. 2017. Using Neural Word Em-
beddings in the Analysis of the Clinical Semantic
Verbal Fluency Task. In Proceedings of the 12th In-
ternational Conference on Computational Semantics
(IWCS 2017), pages 1–7, Montpellier, France).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing sys-
tems, volume 26, pages 3111–3119.

Animesh Nighojkar, Anna Khlyzova, and John Licato.
2022. Cognitive modeling of semantic fluency us-
ing transformers. In Proceedings of the 31th Inter-
national Joint Conference on Artificial Intelligence:
Cognitive Aspects of Knowledge Representation, Vi-
enna, Austria.

Serguei VS Pakhomov and Laura S Hemmy. 2014. A
computational linguistic measure of clustering behav-
ior on semantic verbal fluency task predicts risk of
future dementia in the nun study. Cortex, 55:97–106.

Felipe Paula, Rodrigo Wilkens, Marco Idiart, and Aline
Villavicencio. 2018. Similarity measures for the
detection of clinical conditions with verbal fluency
tasks. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 2 (Short Papers), pages 231–235, New
Orleans, Louisiana. Association for Computational
Linguistics.

Luca Pauselli, Brooke Halpern, Sean D Cleary, Ben-
son S Ku, Michael A Covington, and Michael T
Compton. 2018. Computational linguistic analysis

https://aclanthology.org/C16-1332
https://aclanthology.org/C16-1332
https://doi.org/10.1145/1961209.1961211
https://doi.org/10.1145/1961209.1961211
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1007/978-90-481-8847-5_10
https://doi.org/10.18653/v1/2021.acl-long.144
https://doi.org/10.18653/v1/2021.acl-long.144
https://doi.org/10.18653/v1/N18-2029
https://doi.org/10.18653/v1/N18-2029
https://doi.org/10.18653/v1/N18-2029
https://aclanthology.org/W97-0802
https://aclanthology.org/W97-0802
https://doi.org/10.1162/COLI_a_00237
https://doi.org/10.1162/COLI_a_00237
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/BF01908075
https://doi.org/10.3389/fpsyg.2019.01020
https://doi.org/10.3389/fpsyg.2019.01020
https://doi.org/10.3115/v1/N15-1098
https://doi.org/10.3115/v1/N15-1098
https://doi.org/10.1016/j.cortex.2013.05.009
https://doi.org/10.1016/j.cortex.2013.05.009
https://doi.org/10.1016/j.cortex.2013.05.009
https://doi.org/10.1016/j.cortex.2013.05.009
https://doi.org/10.18653/v1/N18-2037
https://doi.org/10.18653/v1/N18-2037
https://doi.org/10.18653/v1/N18-2037
https://doi.org/10.1016/j.psychres.2018.02.037


188

applied to a semantic fluency task to measure derail-
ment and tangentiality in schizophrenia. Psychiatry
research, 263:74–79.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP, pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Sandro Pezzelle, Ece Takmaz, and Raquel Fernández.
2021. Word representation learning in multimodal
pre-trained transformers: An intrinsic evaluation.
Transactions of the Association for Computational
Linguistics, 9:1563–1579.

Mengyang Qiu and Brendan Johns. 2021. A distribu-
tional and sensorimotor analysis of noun and verb
fluency. PsyArXiv.

Philip Resnik. 1999. Semantic similarity in a taxonomy:
An information-based measure and its application to
problems of ambiguity in natural language. Journal
of artificial intelligence research, 11:95–130.

Zeshu Shao, Esther Janse, Karina Visser, and Antje S.
Meyer. 2014. What do verbal fluency tasks measure?
predictors of verbal fluency performance in older
adults. Frontiers in Psychology, 5:1–10.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. Proceedings of the AAAI Conference
on Artificial Intelligence, 31(1).

Douglas Steinley. 2004. Properties of the hubert-
arable adjusted rand index. Psychological methods,
9(3):386.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Angela K Troyer, Morris Moscovitch, and Gordon
Winocur. 1997. Clustering and switching as two
components of verbal fluency: evidence from
younger and older healthy adults. neuropsychology,
11(1):138.
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7 Appendix

7.1 Data Collection Details
• The experiment was conducted online using

Qualtrics.

• The task is explained in writing with an ac-
companying example during the instruction.
During the test, they are asked to type words
given the category. Typos were corrected
where necessary.

• Each of the 24 categories was presented on
a separate page. The timer (60sec) started
immediately upon presentation. The order is
randomized for each participant. Participants
needed to click through all pages. Empty re-
sults for animals, hobbies, and groceries are
not expected. As sanity check, no response
for these categories is evaluated as failure (10
participants). Two participants were dropped
based on the typing-speed-test. Two partici-
pants made free association (e.g., switching
from mice to cheese) instead of enumerating
within the class.

• Annotators are instructed to follow a common-
sense approach: e.g., "cow" would get as-
signed to a subcategory like "farm animal"
but not to its biological taxonomy.

• The annotation process was conducted in two
levels. First, the entire world list, which was
produced in the experiment, was checked.
An annotator could assign a word to multi-
ple categories, e.g., "lion" as "cat-like”, "sa-
vanna/desert" and "zodiac sign"; these ratings
were done without the annotators knowing the
context in which the word was produced. In
the second run, subcategories for words are
checked in the context of a participant’s con-
crete answers, e.g., "lion" in the context of
"cat" and "panther" would be assigned to "cat-
like" but "lion" in the context of "Capricorn"
would be assigned to "zodiac sign."

• Participants were mainly students of psychol-
ogy receiving credit points

• The study was approved by the ethics board
of the Universität Bielefeld.

7.2 Categories

As mentioned in 3.1, based on qualitative and de-
scriptive analysis, we narrow the 24 categories
down to those (i) that have at least 75 words pro-
duced in total, (ii) which are available in all embed-
dings’ vocabulary list, and (iii) with a minimum
average of 5 words per annotated subcategory. It
should be noted that categories like first names or
computer games are problematic for distributional
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semantic methods. This leaves us with 10 cate-
gories marked in bold below.

• “Amphibians”: “Amphibian”,

• “Animals”: “Tiere”,

• “Body parts”: “Körperteile”,

• “Clothes”: “Kleidungsstücke”,

• “Countries”: “Länder”,

• “Currencies”: “Währungen”,

• “Dances”: “Tänze”,

• “Fabrics”: “Stoffe”,

• “First names”: “Vornamen’,

• “Flowers”: “Blumen’,

• “Gods of antiquity”: “Götter der Antike”,

• “Groceries”: “Lebensmittel”,

• “Hobbies”: “Hobbies”,

• “Insects”: “Insekten”,

• “Metals”: “Metalle”,

• “Mountains”: “Berge”,

• “Occupations”: “Berufe”,

• “Precious stones”: “Edelsteine”,

• “Spices”: “Gewürze”,

• “Trees”: “Baume”,

• “Tropical fruits”: “tropische Früchte”,

• “Vessels”: “Behälter”,

• “Weapons”: “Waffen”,

• “Wines”: “Weinsorten”

Table 7: Subcategory Switch Thresholds for GermaNet
IC-Path Based Similarity Scores

Median 25 Percentile

animals .28 .25
body parts .22 .05

clothes .31 .30
countries .23 .23
fabrics .30 .17

groceries .26 .05
hobbies
insects .37 .36

occupations .20 .12
vessels .26 .26
global .25 .12

7.3 Subcategory Switch Thresholds

Table 9 presents the subcategory switch thresholds
calculated with respect to median and 25-Percentile
values for 4 different embedding spaces.

7.4 Mean Cosine Distance Scores

Average cosine distance scores between pairs
across categories and approaches are presented in
Table 8.

7.5 GermaNet Distance and Similarity
Metrics

Shortest path distance (SD) given category:
The shortest path calculation starts with finding
the most similar synset for each word in the pair
given the category. For example, for the pair <mon-
key, dog> in the animal category, first, the most
relevant synsets for the word “monkey” and “dog”
for the category animal are calculated separately.
Later, the minimum path distance between these
two synsets is measured.

Path-based (PB) relatedness: Unlike the pre-
vious metric that returns absolute path distance
between synsets, path-based relatedness measures
compute the semantic relatedness between two
concepts based on the shortest path between two
synsets in the hypernym relation. The shortest path
length is the minimal number of nodes forming a
path between the two synsets in the relation. It
is also useful to disambiguate word senses (e.g.
mouse as animal or electronic equipment")

IC-based relatedness. This measure is explained
in the main paper (Section).

To illustrate, Figure 5 shows one example se-
quence produced in the animal category with

Table 8: Average cosine distance scores between pairs
across categories and approaches. (The numbers in bold
format indicates highest similarity within the category,
while the underscore indicates second highest scores.

GloVe fastText ConceptNet BERT

animals 0,29 0,48 0,38 0,72
body parts 0,42 0,52 0,44 0,68

clothes 0,22 0,45 0,50 0,72
countries 0,54 0,56 0,41 0,70

fabrics 0,27 0,48 0,45 0,73
groceries 0,31 0,48 0,43 0,70

hobbies 0,32 0,39 0,26 0,70
insects 0,18 0,46 0,49 0,80

occupations 0,31 0,43 0,30 0,68
vessels 0,23 0,45 0,46 0,70
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Table 9: Subcategory Switch Thresholds for Word Embeddings

Median 25 Percentile
GloVe fastText ConceptNet BERT GloVe fastText ConceptNet BERT

animals .28 .48 .37 .71 .17 .38 .21 .64
body parts .32 .54 .45 .67 .46 .44 .31 .62
clothes .20 .47 .55 .73 .09 .33 .36 .62
countries .55 .57 .37 .70 .46 .48 .26 .65
fabrics .24 .46 .44 .74 .13 .37 .28 .66
groceries .30 .49 .43 .70 .17 .37 .30 .61
hobbies .34 .41 .22 .68 .20 .27 .08 .62
insects .16 .47 .47 0.82 .08 .37 .32 .80
occupations .35 .46 .29 .67 .19 .35 .16 .61
vessels .24 .46 .45 .68 .14 .38 .32 .62
global .31 .49 .41 .71 .17 .37 .24 .63

these above-mentioned GermaNet scores. The first
method has no normalization, and although it does
a reasonable job for the overall sequence, it returns
the same value for <cat, dog> and <rat, mouse>
pairs. PB metric addresses the normalization is-
sue, still treats these pairs in a same way. On the
other hand, with the inclusion of word frequency
values obtained from a large corpus, it becomes
more sensitive for these pairs while flattening the
other differences in the less frequent items. Since
word enumeration during a verbal fluency task re-
sults in rare and participant-dependent word pair
formations as well as stereotypical pairs, exploring
various metrics is instrumental for understanding
the task dynamics and developing a technique for
automatic scoring.
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Figure 5: Shortest Distance, Path-based and IC-based similarity scores using GermaNet.

Table 10: GermaNet shortest path distance and similarity scores between consecutive synsets

Categories Shortest Path Distance PB-based Similarity IC-based Similarity

animals Corr: .21, p.<.01 Corr: -.30, p.<.01 Corr: –.27, p.<.01
body parts Corr: .19, p.<.01 Corr: –.19, p.<.01 Corr: –.23 , p.<.01

clothes Corr: –.04, n.s. Corr: .02, n.s. Corr: –.06, p.<.01
countries Corr: .077, p.<.01 Corr: –.06, p.<.01 Corr: –.025, n.s.

fabrics Corr: –.04, n.s. Corr: –.08, n.s. Corr: –.12, p.<.05
groceries Corr: .01, n.s. Corr: –.05, n.s. Corr: –.05, p.<.01

hobbies Corr: .282, p.<.01 Corr: –.296, p.<.01 Corr: –.442, p.<.01
insects Corr: .010, n.s. Corr: –.18, p.<.05 Corr: –.23, p.<.01

occupations Corr: .11, n.s. Corr: –.11, p.<.05 Corr: –.24, p.<.01
vessels Corr: .09, n.s. Corr: –.11, n.s. Corr: –.21, p.<.01
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