PCBERT: Parent and Child BERT for Chinese Few-shot NER
Peichao Lai, Feiyang Ye, Lin Zhang, Zhiwei Chen, Yanggeng Fu, Yingjie Wu, Yilei Wang
Abstract
Achieving good performance on few-shot or zero-shot datasets has been a long-term challenge for NER. The conventional semantic transfer approaches on NER will decrease model performance when the semantic distribution is quite different, especially in Chinese few-shot NER. Recently, prompt-tuning has been thoroughly considered for low-resource tasks. But there is no effective prompt-tuning approach for Chinese few-shot NER. In this work, we propose a prompt-based Parent and Child BERT (PCBERT) for Chinese few-shot NER. To train an annotating model on high-resource datasets and then discover more implicit labels on low-resource datasets. We further design a label extension strategy to achieve label transferring from high-resource datasets. We evaluated our model on Weibo and the other three sampling Chinese NER datasets, and the experimental result demonstrates our approach’s effectiveness in few-shot learning.- Anthology ID:
- 2022.coling-1.192
- Volume:
- Proceedings of the 29th International Conference on Computational Linguistics
- Month:
- October
- Year:
- 2022
- Address:
- Gyeongju, Republic of Korea
- Editors:
- Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, Seung-Hoon Na
- Venue:
- COLING
- SIG:
- Publisher:
- International Committee on Computational Linguistics
- Note:
- Pages:
- 2199–2209
- Language:
- URL:
- https://aclanthology.org/2022.coling-1.192
- DOI:
- Bibkey:
- Cite (ACL):
- Peichao Lai, Feiyang Ye, Lin Zhang, Zhiwei Chen, Yanggeng Fu, Yingjie Wu, and Yilei Wang. 2022. PCBERT: Parent and Child BERT for Chinese Few-shot NER. In Proceedings of the 29th International Conference on Computational Linguistics, pages 2199–2209, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
- Cite (Informal):
- PCBERT: Parent and Child BERT for Chinese Few-shot NER (Lai et al., COLING 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.coling-1.192.pdf
Export citation
@inproceedings{lai-etal-2022-pcbert, title = "{PCBERT}: Parent and Child {BERT} for {C}hinese Few-shot {NER}", author = "Lai, Peichao and Ye, Feiyang and Zhang, Lin and Chen, Zhiwei and Fu, Yanggeng and Wu, Yingjie and Wang, Yilei", editor = "Calzolari, Nicoletta and Huang, Chu-Ren and Kim, Hansaem and Pustejovsky, James and Wanner, Leo and Choi, Key-Sun and Ryu, Pum-Mo and Chen, Hsin-Hsi and Donatelli, Lucia and Ji, Heng and Kurohashi, Sadao and Paggio, Patrizia and Xue, Nianwen and Kim, Seokhwan and Hahm, Younggyun and He, Zhong and Lee, Tony Kyungil and Santus, Enrico and Bond, Francis and Na, Seung-Hoon", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics", url = "https://aclanthology.org/2022.coling-1.192", pages = "2199--2209", abstract = "Achieving good performance on few-shot or zero-shot datasets has been a long-term challenge for NER. The conventional semantic transfer approaches on NER will decrease model performance when the semantic distribution is quite different, especially in Chinese few-shot NER. Recently, prompt-tuning has been thoroughly considered for low-resource tasks. But there is no effective prompt-tuning approach for Chinese few-shot NER. In this work, we propose a prompt-based Parent and Child BERT (PCBERT) for Chinese few-shot NER. To train an annotating model on high-resource datasets and then discover more implicit labels on low-resource datasets. We further design a label extension strategy to achieve label transferring from high-resource datasets. We evaluated our model on Weibo and the other three sampling Chinese NER datasets, and the experimental result demonstrates our approach{'}s effectiveness in few-shot learning.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="lai-etal-2022-pcbert"> <titleInfo> <title>PCBERT: Parent and Child BERT for Chinese Few-shot NER</title> </titleInfo> <name type="personal"> <namePart type="given">Peichao</namePart> <namePart type="family">Lai</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Feiyang</namePart> <namePart type="family">Ye</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lin</namePart> <namePart type="family">Zhang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhiwei</namePart> <namePart type="family">Chen</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yanggeng</namePart> <namePart type="family">Fu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yingjie</namePart> <namePart type="family">Wu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yilei</namePart> <namePart type="family">Wang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2022-10</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 29th International Conference on Computational Linguistics</title> </titleInfo> <name type="personal"> <namePart type="given">Nicoletta</namePart> <namePart type="family">Calzolari</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chu-Ren</namePart> <namePart type="family">Huang</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hansaem</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">James</namePart> <namePart type="family">Pustejovsky</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Leo</namePart> <namePart type="family">Wanner</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Key-Sun</namePart> <namePart type="family">Choi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pum-Mo</namePart> <namePart type="family">Ryu</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hsin-Hsi</namePart> <namePart type="family">Chen</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lucia</namePart> <namePart type="family">Donatelli</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Heng</namePart> <namePart type="family">Ji</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sadao</namePart> <namePart type="family">Kurohashi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Patrizia</namePart> <namePart type="family">Paggio</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nianwen</namePart> <namePart type="family">Xue</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seokhwan</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Younggyun</namePart> <namePart type="family">Hahm</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhong</namePart> <namePart type="family">He</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tony</namePart> <namePart type="given">Kyungil</namePart> <namePart type="family">Lee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Enrico</namePart> <namePart type="family">Santus</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Francis</namePart> <namePart type="family">Bond</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seung-Hoon</namePart> <namePart type="family">Na</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>International Committee on Computational Linguistics</publisher> <place> <placeTerm type="text">Gyeongju, Republic of Korea</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>Achieving good performance on few-shot or zero-shot datasets has been a long-term challenge for NER. The conventional semantic transfer approaches on NER will decrease model performance when the semantic distribution is quite different, especially in Chinese few-shot NER. Recently, prompt-tuning has been thoroughly considered for low-resource tasks. But there is no effective prompt-tuning approach for Chinese few-shot NER. In this work, we propose a prompt-based Parent and Child BERT (PCBERT) for Chinese few-shot NER. To train an annotating model on high-resource datasets and then discover more implicit labels on low-resource datasets. We further design a label extension strategy to achieve label transferring from high-resource datasets. We evaluated our model on Weibo and the other three sampling Chinese NER datasets, and the experimental result demonstrates our approach’s effectiveness in few-shot learning.</abstract> <identifier type="citekey">lai-etal-2022-pcbert</identifier> <location> <url>https://aclanthology.org/2022.coling-1.192</url> </location> <part> <date>2022-10</date> <extent unit="page"> <start>2199</start> <end>2209</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T PCBERT: Parent and Child BERT for Chinese Few-shot NER %A Lai, Peichao %A Ye, Feiyang %A Zhang, Lin %A Chen, Zhiwei %A Fu, Yanggeng %A Wu, Yingjie %A Wang, Yilei %Y Calzolari, Nicoletta %Y Huang, Chu-Ren %Y Kim, Hansaem %Y Pustejovsky, James %Y Wanner, Leo %Y Choi, Key-Sun %Y Ryu, Pum-Mo %Y Chen, Hsin-Hsi %Y Donatelli, Lucia %Y Ji, Heng %Y Kurohashi, Sadao %Y Paggio, Patrizia %Y Xue, Nianwen %Y Kim, Seokhwan %Y Hahm, Younggyun %Y He, Zhong %Y Lee, Tony Kyungil %Y Santus, Enrico %Y Bond, Francis %Y Na, Seung-Hoon %S Proceedings of the 29th International Conference on Computational Linguistics %D 2022 %8 October %I International Committee on Computational Linguistics %C Gyeongju, Republic of Korea %F lai-etal-2022-pcbert %X Achieving good performance on few-shot or zero-shot datasets has been a long-term challenge for NER. The conventional semantic transfer approaches on NER will decrease model performance when the semantic distribution is quite different, especially in Chinese few-shot NER. Recently, prompt-tuning has been thoroughly considered for low-resource tasks. But there is no effective prompt-tuning approach for Chinese few-shot NER. In this work, we propose a prompt-based Parent and Child BERT (PCBERT) for Chinese few-shot NER. To train an annotating model on high-resource datasets and then discover more implicit labels on low-resource datasets. We further design a label extension strategy to achieve label transferring from high-resource datasets. We evaluated our model on Weibo and the other three sampling Chinese NER datasets, and the experimental result demonstrates our approach’s effectiveness in few-shot learning. %U https://aclanthology.org/2022.coling-1.192 %P 2199-2209
Markdown (Informal)
[PCBERT: Parent and Child BERT for Chinese Few-shot NER](https://aclanthology.org/2022.coling-1.192) (Lai et al., COLING 2022)
- PCBERT: Parent and Child BERT for Chinese Few-shot NER (Lai et al., COLING 2022)
ACL
- Peichao Lai, Feiyang Ye, Lin Zhang, Zhiwei Chen, Yanggeng Fu, Yingjie Wu, and Yilei Wang. 2022. PCBERT: Parent and Child BERT for Chinese Few-shot NER. In Proceedings of the 29th International Conference on Computational Linguistics, pages 2199–2209, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.