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Abstract

Event Causality Identification (ECI), which
aims to detect whether a causality relation ex-
ists between two given textual events, is an im-
portant task for event causality understanding.
However, the ECI task ignores crucial event
structure and cause-effect causality component
information, making it struggle for downstream
applications. In this paper, we explore a novel
task, namely Event Causality Extraction (ECE),
aiming to extract the cause-effect event causal-
ity pairs with their structured event informa-
tion from plain texts. The ECE task is more
challenging since each event can contain mul-
tiple event arguments, posing fine-grained cor-
relations between events to decide the cause-
effect event pair. Hence, we propose a method
with a dual grid tagging scheme to capture the
intra- and inter-event argument correlations for
ECE. Further, we devise a event type-enhanced
model architecture to realize the dual grid tag-
ging scheme. Experiments demonstrate the ef-
fectiveness of our method, and extensive analy-
ses point out several future directions for ECE.

1 Introduction

Event causality (Liu et al., 2020; Cao et al., 2021)
denotes an explicit causal relation between two
events, constituting a specific cause-effect event
pair. As shown in Figure 1, a causal relation exists
between a Price Rise event (The worldwide
rise of oil prices) and a Cost Rise event (in-
creases the cost of international shipping industry).
Understanding such event causality could facilitate
various downstream applications including event
forecasting (Hashimoto et al., 2014), intelligent
search (Rudnik et al., 2019) and question answer-
ing (Costa et al., 2020), which is important for
natural language understanding.

In recent years, it has aroused the research in-
terest for Event Causality Identification (ECI) (Liu
et al., 2020; Cao et al., 2021; Zuo et al., 2021a,b,
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The worldwide rise of oil prices increases the cost of international shipping 
industry and stimulates the demand for new energy such as Ammonia fuel.

No. Event Type
Event Roles

Product Region Industry

(1) Cause Price Rise oil worldwide None

Effect Cost Rise None international shipping industry

(2) Cause Price Rise oil worldwide None

Effect Demand Rise new energy None Ammonia fuel

Causality
Component

Figure 1: Illustration for ECE which takes the raw text
as input, and outputs the structured event causality pair.

2020; Tran Phu and Nguyen, 2021), which aims
to detect whether the causality exists between two
given events. Despite of its success, there exist two
issues that the ECI task fails to address. 1) Event
Structure Missing, where each event in ECI is
only expressed using a word or phrase which re-
flects its occurrence, but ignores the explicit event
type and event arguments (i.e., entities which par-
ticipate in the event). The absence of such event
structure would lose valuable clues for understand-
ing event causality. As shown in Figure 1, “oil”
plays a Product role in a Price Rise-typed
cause event, implying a consequent Cost Rise-
typed effect event towards “shipping industry”. 2)
Causality Component Missing, where ECI only
predicts the existence of causality between the
given event pairs, ignoring to discriminate the spe-
cific cause/effect event causality component. Lim-
ited by these issues, ECI insufficiently explores the
causality between events, which demands further
promotion to the understanding of event causality.

Motivated by discussion about event causality
in CCKS (2021), we therefore formulate a task
termed as Event Causality Extraction (ECE). As
Figure 1 shows, ECE aims to end-to-end extract
the cause-effect event pairs with structured event
information from plain texts. Comparing with ECI,
ECE illustrates the event causality including the
event structure, namely event types and arguments,
and the specific cause-effect causality component,
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making it more informative to support the various
downstream applications (Wang et al., 2021a).

Intuitively, ECE could be achieved by succes-
sively extracting the structured event and then clas-
sifying their causality relation. Unfortunately, such
a paradigm would easily suffer from the redundant
event-pair problem, where the causality-unrelated
events would be inevitably extracted, confusing
the causality decision. Another promising direc-
tion is to borrow ideas from relational triple ex-
traction (RTE), which shares the similar task for-
mulation. However, comparing with the entity-
centric RTE task, the event-centric ECE raises new
challenges: 1) Intra-event Argument Correla-
tions. Specifically, ECE focuses on event, which
is a structure maintaining interactive correlations
among its arguments. For example in Figure 1, the
argument “new energy” and “Ammonia fuel” in the
Demand Rise event have strong semantic cor-
relation. While RTE focuses on individual entity,
thus simply adapting RTE models cannot capture
such correlations to derive the event structure. 2)
Inter-event Argument Correlations. Concretely,
the event arguments involved in a cause/effect
event pair usually show semantic correlations for
causality deduction. As shown in Figure 1, event
Pricing_Rise which occurs in “worldwide”
Region could imply event Cost_Rise in “inter-
national” Region. It demonstrates that the inter-
event argument correlations not only provide im-
portant clues to decide causality, but also benefit
reliable cause/effect event extraction with mutual
confirmation between the cause-effect pair.

In this paper, we propose an effective approach
named DualCor, which explores both the intra-
event and inter-event argument Correlations with
a dual grid tagging scheme for ECE. Specifically,
DualCor contains two grid tagging tables regarding
event types and the input sentence, to respectively
derive the event structures for cause and effect
events. In each table, DualCor extracts structured
event arguments according to different event types,
naturally considering intra-event argument correla-
tions. Further, when predicting the event arguments
in the cause/effect table, DualCor also predicts their
corresponding effect/cause event arguments, serv-
ing as auxiliary arguments to promote inter-event
argument correlations. By confirming the auxiliary
arguments in the other table, DualCor matches re-
liable cause-effect event pairs as predictions. To
realize the above dual grid tagging scheme, we

further devise a type-aware encoder, which refines
textual representations with essential event type
information to enhance argument prediction. We
conduct the dual grid tagging on the type-aware tex-
tual representations to derive the final cause-effect
event pair. Overall, our main contributions include:

(1) To promote the understanding to event causal-
ity, we formulate a new task named Event Causality
Extraction (ECE), which succeeds ECI to push for-
ward the research of event causality understanding.

(2) We propose a novel approach, DualCor, to
exploit the intra-event and inter-event argument
correlations for ECE, and present it as a baseline
to inspire the following research.

(3) Experiments1 on the ECE dataset reflect the
effectiveness of DualCor, and extensive analyses
show potential research directions for future works.

2 Related Works

This paper explores a novel ECE task, which aims
to extract the cause-effect event pairs with struc-
tured event information from plain texts. Existing
event-causality-related researches mostly focus on
event causality identification, which predicts the
causality for the previously given event pairs. They
can be roughly categorized into three groups: (1)
Early works exploit the linguistic features (Riaz
and Girju, 2013; Gao et al., 2019), causal pat-
terns (Hu et al., 2017; Do et al., 2011) and sta-
tistical causal associations (Riaz and Girju, 2014)
to explore the causality between events. (2) Recent
researchers (Liu et al., 2020; Cao et al., 2021; Zuo
et al., 2021a,b, 2020) pay the major focus on in-
corporating external knowledge for causality iden-
tification with limited training data. (3) Different
from works above which conduct ECI within a sin-
gle sentence, Tran Phu and Nguyen (2021) focus on
document-level ECI, where the given events scat-
ter in multiple sentences. Despite of their success,
they all suffer from the issues of event structure
missing and causality component missing. To our
best knowledge, ECE is the first to simultaneously
derive the structured event information and explicit
causality component, which could better support
the downstream applications.

Other than ECE, Relational Triple Extraction
(RTE) (Yu et al., 2020; Cong et al., 2022) has
the similar task formulation, the ideas of which
could actually be adapted for ECE. Concretely,

1Dataset and source code for implementation are available
here: https://github.com/cuishiyao96/ECE
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RTE detects entity pairs in a sentence and predicts
pre-defined relation types between them. Exist-
ing approaches for RTE could be roughly catego-
rized into two lines. (1) Traditional joint methods,
which solve RTE through sequential interrelated
steps via task decomposition (Wei et al., 2020; Yu
et al., 2020; Cong et al., 2020) or sequence gen-
eration (Zeng et al., 2018; Nayak and Ng, 2020).
Unfortunately, these methods all suffer from the
exposure bias (Wang et al., 2020) problem due to
the gap from training to inference between multiple
steps. (2) Unified joint methods, which simultane-
ously derive the triplet entities and relations in one-
stage without cascading between steps, and is thus
free from the exposure bias. These methods solve
RTE in either a sequence-labeling manner (Zheng
et al., 2017) or grid-filling manner (Wang et al.,
2021b, 2020). However, the entity-centric RTE
methods seem to struggle for the event-centric task,
since events present more complicated argument
correlations either intra- and inter events.

3 Task Formulation

Event causality extraction (ECE) aims to derive the
cause-effect event pairs from plain texts. Here, a
cause-effect event pair contains a Cause component
and an Effect component, where each component
denotes an event with a specific event type and its
event arguments with their event roles. Given a
piece of text, an event causality extraction system
is required to predict all the cause-effect event pairs
from it as Figure 1 shows.

4 Dual Grid Tagging Scheme

This section introduces our proposed dual grid tag-
ging scheme for the ECE, including the tagging
scheme and its decoding strategy. The specific
model implementation is introduced in Section. 5.

4.1 Tagging Scheme

In general, we construct two grid tagging tables
respectively for the cause/effect events, where each
table extracts all the possible events occurring in
the sentence. Formally, given an n-token sentence
and m predefined event types, we construct two
m×n grid tables for the cause and effect events re-
spectively. As shown in Figure 2, each row denotes
arguments within the same event type, while each
column denotes tags assigned to the token in the
sentence based on the event type. For each entry
in the tables, we fill it with a tag in the form of

3 4 1 2 3 4 11 12 7 8

Prices of agri. products ... nationwide ... corn  seeds  ... corn planting across the country

Frost
...

Price 
Rise

...
Flood

(a) Grid tagging for in the cause table.

7 8 9 10 5 6 1 2

Prices of agri. products ... nationwide ... corn   seeds ... corn planting across the country

Frost
...

Profit 
Dec

...

Flood

(b) Grid tagging in the effect table.

1 Intra-Region-S 2 Intra-Region-E 3 Intra-Product-S 4 Intra-Product-E

5 Intra-Industry-S 6 Intra-Industry-E 7 Inter-Region-S 8 Inter-Region-E

9 Inter-Product-S 10 Inter-Product-E 11 Inter-Industry-S 12 Inter-Industry-E

Tags Map

(c) Tags map.

Figure 2: Tagging scheme illustration with the sentence
“Prices of agricultural products rose, but the nationwide
soaring prices of corn seeds decreased the profit in corn
planting across the country.”, where the boundary-field
is short as “S” and “E”.

{Cor-Rol-Bdy} consisting of three fields, namely
correlation-field, role-field and boundary-field:

(1) For the boundary-field: Bdy ∈ {Sta, End},
we devise it to denote start and end position of
argument spans. For example in Figure 2(a), we
match the argument “corn seeds” by matching the
Cor-Rol-Sta and Cor-Rol-End tags.

(2) For the role-field: Rol∈{Roli}i (i for role in-
dex), we devise it to denote the event role for each
argument in an event, thus constituting an event
structure. For example in Figure 2(a), we decide the
argument “corn seeds” as a Product-role argu-
ment in Price_Rising-type event based on its
Cor-Product-Bdy tag in Price_Rising row.

(3) For correlation-field: Cor∈{Intra, Inter},
we devise it to denote event argument correlations
in the cause-effect event pair. Specifically, Intra
denotes the arguments belonging to the same event
in the one causality component, while Inter de-
notes the arguments in the other causality com-
ponent. For example, when predicting the cause
event in the cause table, we predict not only the
cause arguments (marked with Intra) with cause
event type, but also the potential effect arguments
(marked with Inter) as auxiliary arguments for
mutual confirmation in causality pair matching. As
Figure 2(a) shows, we not only predict argument
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“corn seeds” with Intra for the Price_Rise-
type cause event, but also predict “corn planting”
with Inter tag as effect event argument. By match-
ing argument “corn planting” with Intra tag in the
effect table, we can derive a Price_Rise-typed
and Profit_Declination-typed event pair.

Building upon the tagging scheme, the model
can naturally extract causality event pairs with their
arguments. Besides, the scheme learns event argu-
ments for each type within separate type row, allow-
ing the model to consider intra-event argument cor-
relations with type-specific information. Moreover,
the tagging scheme enforces the model to extract
arguments in one causality component perceiving
arguments in the other causality component, thus
capturing inter-event argument correlations.

4.2 Decoding Strategy

Based upon the tagging scheme, we introduce the
decoding strategy for the tagging results. Specifi-
cally, we decompose the process into three steps,
including argument span decoding, event structure
decoding and causality pair decoding. Appendix A
also provides figure illustration to these three steps.
Step 1. Argument span decoding. To derive ar-
gument spans for cause/effect events, we adopt
the nearest start-end match principle (Wei et al.,
2020). Specifically, for entry tags having the same
correlation-field and role-field in the same row, we
match the start position to the nearest end posi-
tion according to the position-field to obtain candi-
date argument spans. For example in Figure 2(a),
this step ought to predict “agriculture products”,
“nationwide”, “corn seeds”, “corn planting” and
“across the country” as candidate argument spans.

Step 2. Event structure decoding. To derive
event structure for cause/effect events, we collect
candidate argument spans attached to the same
event type. Specifically, we merge the event ar-
guments with correlation-field Intra belonging
to the same row, resulting in structured candi-
date events. For example in Figure 2(a), given
the candidate argument spans in Step 1, this step
ought to select “agriculture products”, “nationwide”
and “corn seeds” with Intra tags as the candidate
Price_Rising-type cause event arguments.

Step 3. Causality pair decoding. To derive
causality pairs, we match inter-event correlated ar-
guments between candidate cause and effect events.
Specifically, we search the arguments co-occurring
in both event tables simultaneously associating

[CLS] e1 [M1] ... [SEP] Prices... rose,but the ... country [SEP]

Encoding   Layer

Grid Representation Layer Grid Representation Layer

Decoding Decoding

Causality Event Type
Event Roles

Product Region Industry

Cause Price Rise corn seeds nationwide None
Effect Profit Declination None across the country corn planting

Figure 3: A toy illustration to our model architecture.

with correlation-field Intra and Inter, and then
confirm cause-effect event arguments. For exam-
ple in Figure 2(a), given the candidate event ar-
guments in Step 2, this step ought to select “na-
tionwide” and “corn seeds” as the true cause event
arguments, since there also exist “nationwide” and
“corn seeds” with Inter tags in the effect tables
(Figure 2(b)). Similarly, this step also selects “corn
planting”, “across the country” as the arguments in
the Profit_Declination-type effect events.
Accordingly, it predicts the Price_Rise-type
cause and Profit_Declination-type effect
event pair as Figure 3 shows. Note that though
“agriculture product” is also an event argument can-
didate of a Price_Rise-type event in Step 2, it is
not included in the causality pair due to the absence
of Inter correlation in the effect table.

5 Model

In this section, we introduce the model architecture
to implement DualCor as Figure 3 shows.

5.1 Encoding Layer

This layer derives the contextualized representa-
tions of tokens in the sentence and event types. To
facilitate the following event argument prediction,
we intend to conduct event type-aware encoding
which refines textual representations with event
type information. Specifically, we concatenate the
event types ahead of the sentence, and employ
BERT (Devlin et al., 2019) for encoding thanks
to its deep self-attention architectures (Vaswani
et al., 2017). Supposing that a text consisting of
n tokens {t1, t2, ..., tn} and m predefined event
types {e1, e2, ..., em} are given, the input sequence
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is organized in the form as follows:

[CLS] e1 [M1] e2 [M2]... em [Mm] [SEP]t1 ... tn [SEP]
(1)

where [Mj] is the marker for the jth event types ej .
We feed the input sequence into the encoder and
use the output representations H = h1,h2, ...,hn
corresponding to the sentence as token represen-
tations. Then, we gather representations of event
type markers as event type representations, which
is denoted as E = e1, e2, ..., em.

5.2 Grid Representation Layer

This section first details the function for producing
entry representations, and then introduces how to
apply it in both grid tables.

5.2.1 Semantic Fusion Function
Each entry in the grid respectively models the re-
lation between one token and an event type for
event argument deduction. For an entry connecting
the jth event type ej and ith token in the sentence,
its representation gj,i could be obtained via a fu-
sion function φ by integrating the semantics of ti
and ej as gj,i = φ(ej ,hi). Intuitively, φ could be
achieved in various semantic fusion ways includ-
ing concatenation or addition. Considering that
the same event argument span could play different
role in different event types (Sheng et al., 2021),
the decision of event arguments are conditioned on
the event type. Hence, φ should imply the condi-
tional dependency between event types and tokens.
Accordingly, we adopt Conditional Layer Normal-
ization (CLN) (Su, 2019) to implement φ. CLN
is mostly based on the Layer Normalization (Ba
et al., 2016), but it dynamically computes the gain
γ and bias β based on the prior condition instead
of directly deploying them as learnable parameters
in neural networks. Given the event type represen-
tation ej as condition and a token representation
hi, the fusion function φ is achieved via CLN as:

φ(ej ,hi) = CLN(ej ,hi) = γj � (
hi − µi
σi

) + βj ,

γj = Wγej + bγ , βj = Wβej + bβ,
(2)

where µi ∈ R and σi ∈ R are the mean and stan-
dard variance taken across the elements of hi, and
γj ∈ Rd and βj ∈ Rd are respectively the condi-
tional gain and bias. In this way, the event type in-
formation is expressed as conditional information,
and is thus integrated with token representations.

5.2.2 Grid Representation
We employ two semantic fusion functions, φc, φr,
to respectively derive entry representations for the
cause and effect grid table . Each semantic fusion
function is implemented by a layer of CLN, and
thus the entry representation is obtained as:

gcj,i = φc(ej ,hi) = CLNc(ej ,hi),

grj,i = φr(ej ,hi) = CLNr(ej ,hi),
(3)

where gcj,i, g
r
j,i are respectively the entry represen-

tation in the cause and effect table for grid tagging.

5.3 Training and Inference

Since multiple tags could be simultaneously as-
signed towards (ej , ti) in each table, we conduct
multi-label classification upon entry representa-
tions. Specifically, a fully-connected network pre-
dicts the probability of each tag for (ej , ti) as:

pIj,i = sigmoid(gIj,iW
I + bI) (4)

where I ∈ {c, r} is the symbol of grid field de-
noting the cause and effect grid table respectively,
and each dimension of pIj,i denotes the probability
for a tag between (ej , ti). Consequently, we adapt
Cross-Entropy loss as the loss function:

LI = −
m∑
j=1

n∑
i=1

∑
k∈C

I(yIji = k)log(pIj,i[k]),

(5)
where C is the set of predefined tags, pIj,i[k] ∈
[0, 1] is the predicted probability of tag k between
(ej , ti) and yIji is the ground truth tag between
(ej , ti). I is a switching function which equals
to 1 when yIji = k, otherwise 0. Following equa-
tion 5, we obtain losses from both grid tables, and
aggregate them for the final training objective:

J (θ) = Lc + Lr. (6)

For inference, pIj,i is converted into tags whose
probability overweights the scalar threshold τI ∈
[0, 1], which is a manually tuned hyper-parameter.

6 Experiments

6.1 Dataset and Evaluation

Dataset We conduct experiments on the cor-
pus (Tianchi, 2021) released by China Conference
on Knowledge Graph and Semantic Computing
2021 (CCKS2021). The corpus comes from the
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public news and reports, containing 7,000 sen-
tences with an average length of 104 tokens. It an-
notates 15,816 events containing 7908 event causal-
ity pairs, covering 39 types of events and 3 types
of event roles, namely Product, Region and
Industry. To adapt this corpus into ECE task,
we divide the corpus into training/validation/test
set based on Cause-Effect event types. Specifically,
CCKS2021 is divided into training/validation/test
set with the proportion of 8 : 1 : 1. We rename the
split dataset as ECE-CCKS.
Evaluation We evaluate our model using Precision
(P), Recall (R) and Micro-F1 (F1) of three met-
rics. (1) Event Argument Extraction (EAE) Met-
ric evaluates the model’s ability to extract event
arguments of interests. Like prior works (Yang
et al., 2019), an argument is correctly predicted
when its event type, span and event role simulta-
neously match the gold label. (2) Cause-Effect
Type (CET) Metric measures whether both the
predicted cause and effect event type match the
golden answer. (3) Event Causality Extraction
(ECE) Metric synthesizes the above two metrics,
where an argument in ECE is correctly extracted
when its predicted cause-effect event type, span
and event role simultaneously meet the gold label.

6.2 Implementation Details
We employ BERTbase (Devlin et al., 2019) as the
encoder for our model and baselines. For DualCor,
we manually tune all the hyper-parameters on the
validation set. AdamW with learning rate of 3e-
5 is adopted for model optimization. The model
is trained 10 epoches with batch size of 8. The
max length of sentence is 150 by padding shorter
sentences and cutting longer ones. The threshold
τ c, τ r are both set as 0.5.

6.3 Baselines
We employ a variety of baselines which could be
classified into two streams.
Event-then-Causality methods. These methods
first extract events from texts and then classify the
causal relation. For event extraction, we choose
three typical models. (1)BERT-Softmax (Devlin
et al., 2019) adopts BERT to learn textual represen-
tations, and conducts sequence labeling for event
extraction; (2) BERT-CRF utilizes conditional ran-
dom field (CRF) to capture label dependencies
upon the textual representations (Du and Cardie,
2020). (3) DMBERT (Wang et al., 2019) adopts
dynamic multi-pooling (Chen et al., 2015) upon

BERT to aggregate features for event extraction.
(4) PLMEE (Yang et al., 2019) further adopts role-
specific argument tagger upon BERT to solve the
argument overlapping issue. After obtaining the
events, we enumerate all possible cause-effect pairs
and follow Zuo et al. (2021b) to build a Multilayer
Perceptron classifier to decide the causality.
Event-with-Causality methods. Instead of sepa-
rately deriving events and causality, these meth-
ods conduct event extraction with the causality
taken into consideration and thus simultaneously
derive the events and causality pair. To do this, we
adapt three typical RTE methods as follows. (1)
Novel-tagging designs a unified label space com-
bining causality component (cause/effect), event
types, event roles and argument boundary, and con-
ducts ECE via sequence-labeling following Zheng
et al. (2017). (2) CasECE, which is inspired by
CasRel (Wei et al., 2020), first extracts the cause
event, conditioned on which to derive the effect
event. (3) Pair-linking works in a grid tagging
manner following Wang et al. (2020). It first con-
ducts event-type-level pair linking to derive the
cause-effect event-type, which is then used as con-
ditional information for token-pair linking to de-
rive event arguments. Appendix B provides details
about how we adapt these methods for ECE.

6.4 Main Results

We report the overall results in Table 1, and have
observations as follows.

(1) The event-then-causality baselines generally
produce weak performances, especially on the Pre-
cision indicator. The reason lies in that these meth-
ods extract events without considering the interest
of causality. As a result, many causality-unrelated
events are wrongly extracted, which would confuse
the causality decision.

(2) Performances of the event-with-causality
baselines are superior to the event-then-causality
models, since the events are extracted with causal-
ity modeling, thus reducing the number of redun-
dant events. However, their performances are still
barely satisfactory, since the entity-oriented rela-
tion modeling strategy could not sufficiently to ex-
plore intra- and inter- correlations between events.

(3) DualCor achieves the best results among all
baselines, we attribute this to that our designed
dual grid tagging schema effectively explore the
intra- and inter-event argument correlations. De-
spite of this, the overall ECE performance is far
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EAE(%) CET(%) ECE(%)

P R F1 P R F1 P R F1

BERT-softmax+Causality 32.55 35.11 33.78 49.61 64.20 55.97 30.47 31.52 30.99
BERT-CRF+Causality 35.52 34.10 34.79 53.22 60.95 56.82 31.02 31.28 31.15
DMBERT+Causality 34.27 38.18 36.12 52.87 63.20 57.58 30.08 34.93 32.33
PLMEE+Causality 34.22 40.70 37.18 58.11 60.20 59.13 29.98 41.14 34.69

Novel-tagging 59.40 28.47 38.49 49.79 61.70 55.11 51.52 26.75 35.22
CasECE 36.88 36.72 36.80 58.26 59.70 58.97 31.30 41.81 35.80
Pair-tagging 47.08 46.49 46.79 55.78 62.95 59.14 39.24 47.69 43.05

DualCor 58.05 47.60 52.31 61.75 58.19 59.92 48.56 44.85 46.63

Table 1: Overall results. The Wilcoxons test shows significant difference (p<0.05) between DualCor and baselines.

Overall Single subset Multi subset

20

30

40

50

EC
E 

F1
 sc

or
e 

(%
)

DualCor
Pair-linking
PLMEE+Cau

Figure 4: ECE performances on overall test set, Single
and Multi subset. Appendix D shows detailed values.

from satisfactory. This reflects that ECE requires
investigations from future works to improve it.

6.5 Single pair vs. Multi pairs

We notice that nearly 10% sentences in our dataset
express multiple event causality pairs, and thus
probe how the number of causality pairs influ-
ences the ECE performance. Specifically, we di-
vide the test set into a Single subset where each
sentence contains only one event causality pair,
otherwise, Multi subset. Apart from DualCor,
PLMEE+Causality (PLMEE+Cau in short) and
Pair-linking are chosen as representatives for com-
pared baselines, and we present their performances
in Figure 4. Reading from the figure, we could
see that (1) all models present a decreasing per-
formance from Single to Multi subset, reflecting
that ECE towards multiple causality pairs is much
tricky. (2) Reasons for the weak performance on
the Multi subset may be that the increasing number
of causality pairs come from the increase of men-
tioned events, which demands more complicated
inter-event correlations modeling (Sheng et al.,
2022). (3) Since the performance on the Multi
subset is obviously inferior to the overall and Sin-
gle subset performances, we argue that Multi-pairs
could be one great challenge which deserves inves-
tigation from future ECE works.

Method EAE CET ECE

DualCor 52.50 61.60 47.58

w/o Intra Cor 20.47 14.38 10.37
w/o Inter Cor 48.57 56.82 43.36

w/o type-aware encoding 47.69 56.00 43.16
φ → Concatenation 51.39 59.56 45.88
φ → Addition 51.96 61.08 46.83

Table 2: Ablation Study (F1%) on the validation set .
Appendix E illustrates ablation on the test set.

7 Analysis and Discussion

7.1 Ablation Study

To study how each module contributes to the per-
formance, we ablate to DualCor on the validation
set as Table 2 shows.

We probe the argument correlations via ablation
to the tagging scheme. (1) w/o Intra-event argu-
ment correlations (Intra-Cor): To explore the neces-
sity of Intra-Cor, we remove tags whose correlation-
field are Intra in the tagging scheme. This leads to
the sharp performance drops since Intra-Cor is the
key to derive individual event from each grid. (2)
w/o Inter-event argument correlations (Inter-Cor):
To certify the effectiveness of Inter-Cor, we remove
tags whose correlation-field are Inter. Without
Inter-cor, the causality pairs are obtained by ex-
haustive enumeration between the cause and effect
event which are individually derived from two ta-
bles. The ECE performance declines 4.42%, reflect-
ing the importance of Inter-Cor. (3) We observe
that the removing of either type of tags would hurt
performances, verifying that these two correlations
are both beneficial and functional for ECE.

We explore the influence of the model architec-
ture via ablation to the encoding and grid represen-
tation layer. (1) w/o type-aware encoding: Instead
of the collaborative encoding as Equation 1 shows,
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Category Example

Wrong Cause-
Effect Type

Instance#1: The falling of stainless steel prices was caused by the drop in the cost of pure nickel.
Gold: {Event typecause: Cost Declination, event typeeffect: Price Declination }
Predicted: {Event typecause: Price Declination, event typeeffect: Price Declination }

Redundant
Arguments

Instance#2: Feed prices rise across the country, reducing the profits in poultry industry.
Gold: {Regioncause: across the country, Regioneffect: None }
Predicted: {Regioncause: across the country, Regioneffect: across the country }

Missing
Arguments

Instance#3: 50% of coke enterprises in Shanxi, Ningxia and 30% of those in Inner Mongolia have
restricted their production, for which the coke output decreased.
Gold: {Regionreason: Shanxi, Ningxia, Inner Mongolia }
Predicted: {Regionreason: Shanxi, Ningxia }

Table 3: Error analysis, where we only present the associated event types and event arguments due to the space
limitation. Appendix F provides the complete event causality pair for these three instances.

#Para. Training Inference

DualCor 107.10M 18.6sents/s 38.9sents/s
Pair-linking 107.63M 6.4sents/s 19.4sents/s

Table 4: Efficiency comparison.

when we encode sentence using BERT while ob-
tain event type embeddings by random initializa-
tion, the final performance declines by 4.42%. This
manifests the importance of capturing semantic de-
pendency between event types and each sentence.
(2) φ→ Concatenation or Addition: To explore the
impact of the semantic fusion function φ in Sec-
tion 5.2.1, we respectively replace CLN as concate-
nation and addition. The performance degradation
upon two variants signifies that CLN could bet-
ter enhance token representations with event types,
producing more expressive entry representations.

7.2 Efficiency Discussion

Since Pair-Linking also works in a grid tagging
manner and achieves the comparable performance
with DualCor, we discuss the efficiency of these
two architectures from two aspects: parameter
amount and running speed. For the sake of fairness,
we run them on the same GPU server. Reading
from Table 4, we notice that the amount of pa-
rameters of our model and Pair-Linking is roughly
equal. We attribute this to that they both exploits
the same basic encoding and grid representations
learning strategy. However, we observe that the
training and inference speeds of our model are re-
spectively about 2.91 and 2.01 times faster than
Pair-Linking. This is mainly because that the rep-
resentation learning for two grids are carried in
parallel in our model, while those of Pair-Linking
are sequentially conducted. Considering analysis

above, we could conclude that our model also main-
tains efficiency advantage over Pair-linking.

7.3 Error Analysis

To probe the drawbacks of DualCor and promote
future works, we conduct error analysis towards
100 randomly selected failure instances. Here, we
discuss three typical error types as Table 3 shows.
(1) Wrong Cause-Effect Type refers to predicting
the wrong combination of cause-effect event types
as Instance#1. This error can severely hurt the fi-
nal performances, since event arguments under the
wrong cause-effect type would be regarded as false
positive in ECE. We notice that almost 40% error
cases of DualCor belong to this type, while that
of Pair-linking is 32%. We attribute this to that
our method mainly focus on correlations between
event arguments, which lacks exact cause-effect
modeling between event types, while the event-
type-level pair linking in Pair-linking accounts for
this. (2) Redundant Arguments denotes that the
model predicts an argument which actually does
not exist, as the redundant region for effect event
in Instance#2. This kind of errors usually appear
between the cause and effect event upon the same
event role, which demonstrates the difficulty of de-
ducing causality-specific event arguments. Though
redundant arguments accounts for nearly 30% er-
ror cases of DualCor, it is almost 10% lower than
that of Pair-linking. This reveals the importance of
exploring intra- and inter- event argument correla-
tions to discriminate the cause / effect event argu-
ments. (3) Missing Arguments refers to that the
model fails to predict the existed event argument,
as the missed “Inner Mongolia” in Instance#3. We
observe that it usually occurs for event roles which
contains multiple event arguments, where more
sophisticated modeling of intra-event arguments
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correlations are required.

8 Conclusion

In this paper, we formulate a new task, Event
Causality Extraction (ECE), which aims to extract
the cause-effect event pairs with structured event
information from plain texts. We propose a method
based on an elaborately devised dual grid tagging
scheme, which explores the intra- and inter-event
argument correlations for the task. Experiment re-
sults prove the effectiveness of our method, and
extensive analyses are conducted to point out sev-
eral promising directions to inspire future works.
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A Decoding strategy

Step 1. Argument span decoding. In this stage,
we derive argument spans for cause/effect events
using the nearest start-end match principle (Wei
et al., 2020). Specifically, for those entry tags hav-
ing the same correlation-field and role-field in the
same row, we match the start position to the near-
est end position according to the position-field to
obtain candidate argument spans Figure 5.(a).

Step 2. Event structure decoding. In this stage,
we collect candidate argument spans attached to the
same event types. Specifically, we merge the event
arguments with correlation-field Intra belonging
to the same row, resulting in structured candidate
events in Figure 5.(b).

Step 3. Causality pair decoding. To derive
causality pairs, we match inter-event correlated ar-
guments between candidate cause and effect events.
Specifically, we first obtain event argument with
correlation-field Inter in each table as Figure 5.(c).
Then, we search the arguments co-occurring in
both event tables simultaneously associating with
correlation-field Intra and Inter, and merge
them to form the cause-effect pair in Figure 5.(d).

Table Event Type
Event Roles

Product Region Industry

Cause(Intra) Price Rise agriculture products
corn seeds

nationwide None

Effect(Intra) Profit Declination None across the country corn planting

Table Event Type
Event Roles

Product Region Industry

Cause(Inter) Price Rise None across the country corn planting

Effect(Inter) Profit Declination corn seeds nationwide None

Causality Event Type
Event Roles

Product Region Industry

Cause Price Rise corn seeds nationwide None

Effect Prifit Declination None across the country corn planting

Table Argument Spans

Cause agriculture products, corn seeds, nationwide, corn planting, across the country

Effect corn seeds, nationwide, corn planting, across the country

(a) Argument spans derived from Step 1.

(b) Event candidates derived from Step 2 via Intra field.

(c) Inter-arguments derived via Inter field.

(d) The cause-effect Event pair, which is derived by merging arguments which co-
appear in both event tables with correlation-field Intra and Inter.

Figure 5: Detailed illustration to decoding strategy.

B Details about adapted baseliens

We detail the adaption of RTE methods to ECE.
(1) Novel-tagging is adapted from Zheng

et al. (2017). It performs RTE through sequence
labeling with a novel tagging scheme, which com-
bines the label spaces of relation types and relation

roles (subject and object), Similarly, we adopt a uni-
fied label space combining cause/effect, event type,
event roles and argument boundary tag, namely
{Causality-EventType-EventRole-Bdy}.
Given the 2 types of causality components, 39
predefined event types, 3 predefined event roles
and the Start/End boundary indicator, the capacity
of the unified label space is 2× 39× 3× 2 = 468.
We employ the unified labels to tag the tokens in a
sequence labeling manner with BERT+Softmax.
Note that we only deploy BERT+Softmax for
sequence labeling here, since the joint label space
is too large for BERT-CRF to implement on our
experiment devices.

(2) CasECE is adapted from CasRel (Wei et al.,
2020), which conducts RTE by modeling the rela-
tions as functions mapping subject entity to object
entity. Similarly, we regard the causality relation
as the function which maps the cause event to the
effect event. Following CasRel, we first extract the
cause event, and then conditioned on it to derive the
effect event. During this process, PLMEE (Yang
et al., 2019) is utilized as the event extractor.

(3) Pair-linking is adapted from
TPLinker (Wang et al., 2020), where RTE
is formulated as a token pair linking problem
which aligns the boundary tokens of entity pairs
under each relation type. Similarly, we intend to
respectively extract event arguments under specific
cause-effect event types. Specifically, we first
conduct event-type-level pair linking to derive
the cause-effect event types. Then, we utilize
CLN to refine textual representations enhanced
with cause-effect event type pair information, and
conduct token-pair-linking to extract the event
arguments for the specific cause and effect event.

C Other encoders

We report performances of DualCor using different
basic encoders in Table 5.

D Single pair vs. Multi pairs

We detail ECE performances on the overall test,
Single and Multi subset in Table 6.

E Ablation on the test

We provide ablation study on the test set in Table 7.

F Error analysis

This section provides the complete instances for
error analysis in Table 8.
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EAE(%) CET(%) ECE(%)

P R F1 P R F1 P R F1
DualCorBERTbase 58.05 47.60 52.31 61.75 58.19 59.92 48.56 44.85 46.63
DualCorRobertabase 61.46 46.29 52.80 66.14 58.19 61.91 52.801 44.89 48.53
DualCorRobertalarge 63.44 50.48 56.22 67.52 62.70 65.02 54.67 49.80 52.12
DualCorMacBERT 67.64 49.19 56.96 70.68 60.95 65.45 58.29 48.02 52.66

Table 5: Overall results on the test set.

Overall(%) Single Subset(%) Multi Subset(%)

P R F1 P R F1 P R F1

PLMEE+Causality 29.98 41.14 34.69 29.89 46.42 36.37 30.58 23.76 26.74
Pair-linking 39.24 47.69 43.05 40.31 54.32 46.28 32.15 24.82 28.03

DualCor 48.64 44.85 46.67 49.39 51.56 50.46 43.65 22.72 29.89

Table 6: ECE performances on the overall test set, Single subset and Multi subset.

Method EAE CET ECE

DualCor 52.36 59.96 46.67

w/o Intra Cor 19.11 12.51 9.32
w/o Inter Cor 49.29 55.04 42.88

w/o type-aware encoding 47.21 54.72 41.79
φ → Concatenation 50.91 57.99 44.04
φ → Addition 51.52 58.90 45.05

Table 7: Ablation Study: F1% upon the three metrics on the test set.

Category Example

Wrong Cause-
Effect Type

Instance#1: The falling of stainless steel prices was caused by the drop in the cost of pure nickel.
Gold: {Event typecause: Cost Declination, Event typeeffect: Price Declination,

Productcause: pure nickel, Producteffect: stainless steel,
Regioncause: None, Industryeffect: None
Industrycause: None, Industryeffect: None }

Predicted: {Event typecause: Price Declination, event typeeffect: Price Declination,
Productcause: pure nickel, Producteffect: stainless steel,
Regioncause: None, Industryeffect: None
Industrycause: None, Industryeffect: None }

Redundant
Arguments

Instance#2: Feed prices rise across the country, reducing the profits in poultry industry.
Gold: { Event typecause: Price Rise, Event typeeffect: Profit Declination,

Productcause: feed, Producteffect: None,
Regioncause: across the country, Regioneffect: None,
Industrycause: None, Industryeffect: poultry industry }

Predicted: { Event typecause: Price Rising, Event typeeffect: Profit Declination,
Productcause: feed, Producteffect: None,
Regioncause: across the country, Regioneffect: across the country,
Industrycause: None, Industryeffect: poultry industry }

Missing
Arguments

Instance#3: 50% of coke enterprises in Shanxi, Ningxia and 30% of those in Inner Mongolia have
restricted their production, for which the supply of coke output.
Gold: {Event typecause: Production Restriction, Event typeeffect: Supply Reduction,

Productcause: coke, Producteffect: coke,
Regioncause: Shanxi, Ningxia, Inner Mongolia, Regioneffect: None,
Industrycause: None, Industryeffect: None }

Predicted: {Event typecause: Production Restriction, Event typeeffect: Supply Reduction,
Productcause: coke, Producteffect: coke,
Regioncause: Shanxi, Ningxia, Regioneffect: None,
Industrycause: None, Industryeffect: None }

Table 8: The complete results of error analysis.
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