MECI: A Multilingual Dataset for Event Causality Identification

Viet Dac Lai, Amir Pouran Ben Veyseh, Minh Van Nguyen
Franck Dernoncourt, Thien Huu Nguyen
Dept. of Computer Science, University of Oregon, OR, USA
Adobe Research, Seattle, WA, USA
{vietl,apouranb,minhnv,thien}@cs.uoregon.edu
franck.dernoncourt@adobe.com

Abstract

Event Causality Identification (ECI) is the task of detecting causal relations between events mentioned in the text. Although this task has been extensively studied for English materials, it is under-explored for many other languages. A major reason for this issue is the lack of multilingual datasets that provide consistent annotations for event causality relations in multiple non-English languages. To address this issue, we introduce a new multilingual dataset for ECI, called MECI. The dataset employs consistent annotation guidelines for five typologically different languages, i.e., English, Danish, Spanish, Turkish, and Urdu. Our dataset thus enable a new research direction on cross-lingual transfer learning for ECI. Our extensive experiments demonstrate high quality for MECI that can provide ample research challenges and directions for future research. We will publicly release MECI to promote research on multilingual ECI. The dataset is available at https://github.com/nlp-uoregon/meci-dataset.

1 Introduction

Event Causality Identification (ECI) is an important Information Extraction (IE) task that aims to identify causal relations between event mentions in text. For example, in the sentence “After inspection of his computer, officers found that he was interested...”, a ECI system should detect a causal relation between two events “inspection” and “found”. ECI can provide valuable information for various applications such as event timeline construction (Shahaf and Guestrin, 2010), question-answering (Oh et al., 2016), future event forecasting (Hashimoto, 2019), and machine reading comprehension (Berant et al., 2014).

Due to its applications, ECI has been extensively studied in the natural language processing community over the past decade. The vast majority of methods for ECI involve feature engineering models (Do et al., 2011; Hu and Walker, 2017; Hashimoto, 2019; Ning et al., 2018; Gao et al., 2019) and recent deep learning architectures (Kadowaki et al., 2019; Zuo et al., 2021b; Liu et al., 2021; Zuo et al., 2021a; Man et al., 2022a). As such, the creation of large annotated datasets, e.g., EventStoryLine (Caselli and Vossen, 2017), has been critical to the development of ECI study. However, existing datasets for ECI only annotate causal relations between event mentions in data of a single language, i.e., mainly for English (Caselli and Vossen, 2017; Cybulska and Vossen, 2014; O’Gorman et al., 2016). On the one hand, this leaves many other languages unexplored for ECI, posing an important question about the generalization ability of existing methods to other languages. For instance, Spanish, Danish, and Turkish are not covered in those separated datasets for ECI. Moreover, the current single-language datasets for ECI tend to employ different annotation guidelines that prevent their combination into a larger corpus and cross-lingual transfer learning research to train and evaluate models in different languages. In all, the annotation discrepancy and limited language coverage hinder the research and development of the ECI in various dimensions, necessitating a new dataset with broader coverage for ECI.

To address this issue, this paper introduces a Multilingual Event Causality Identification (MECI) dataset to standardize and foster future research in multilingual ECI. Particularly, we present a large-scale ECI dataset for five languages, i.e., English, Danish, Spanish, Turkish, and Urdu that are annotated with the same annotation guideline to enable cross-lingual transfer learning evaluation for the first time. As such, four languages, i.e., Danish, Spanish, Turkish, and Urdu, are not explored in any of the existing datasets for ECI. To facilitate open access to the dataset, we obtain the texts from

1 We will maintain the dataset and include more languages along the way.
Figure 1: Our annotation interface for event causality identification.

2 Data Annotation

2.1 Annotation Scheme

Our goal is to annotate causal relations between event mentions in text. To this end, we define the annotation scheme for event mentions following the guidelines for the ACE 2005 dataset (Walker et al., 2006), and the causal event relation guideline from EventStoryLine (Caselli and Vossen, 2017) (with both explicit and implicit causal relations) during the annotation process. In total, our MECI dataset involves 46K events and 11K relations that are substantially larger than those in existing ECI datasets. Figure 1 illustrates our annotation interface in this work.

In addition, we evaluate the proposed MECI dataset using the state-of-the-art models for ECI. We investigate the challenges of MECI over all examined languages through the monolingual setting where the models are trained and evaluated in the same language. The experiments show that the performance of existing ECI models, even with large pre-trained language models (PLMs), is far from satisfactory; models for non-English languages generally perform poorer than their English counterparts. We also observe the importance of choosing language-specific or multilingual PLMs for ECI models as their effectiveness varies for different languages. Moreover, we evaluate the models in the zero-shot cross-lingual setting, where the models are trained on English data and tested on the data of the other languages. The experiment suggests transferability of ECI knowledge between English and Urdu while showing a significant performance drop in other language pairs. These results can serve as baselines for future studies on cross-lingual transfer learning for ECI. Finally, we report the analysis and challenges of the MECI dataset to provide insights for future ECI research. We will publicly release MECI to promote future studies in multilingual ECI.
i.e., Causal-TimeBank (Mirza and Tonelli, 2014), RED (O’Gorman et al., 2016), BECauSe (Dunietz et al., 2017), that have only considered explicit relations covering the three causal concepts: cause, enable, and prevent through a verb-based lexicalization (Wolff, 2007). In our view, causality is a tool for humans to understand the world, and its existence is independent of the actual language for presentation (Neeleman et al., 2012). Hence, event causality relations might be established without explicit ground in the text. In other words, there are implicit causal relations between events that are not covered by the above lexicalization (Caselli and Vossen, 2017; Webber et al., 2019).

To capture this important type of event causality relations, our annotation guideline is extended to cover implicit relations which require background knowledge, e.g., common-sense, domain-specific knowledge, for successful identification. Finally, similar to prior datasets, we annotate both intra- and inter-sentential causal relations between two events (Mirza and Tonelli, 2014; Caselli and Vossen, 2017).

2.2 Data Collection & Preparation

The documents for our MECI dataset are collected from Wikipedia for five topologically different languages, i.e., English, Danish, Spanish, Turkish, and Urdu. In particular, we focus on 5 topics: aviation accidents, railway accidents, natural disasters, conflicts, and economic crisis, to expect a high yield of events and event causality relations. Wikipedia organizes articles into a hierarchical graph of categories. A category is a group of articles sharing a topic that might be further split into finer subcategories as shown in Figure 2. Furthermore, the hierarchical category systems in Wikipedia for different languages are interconnected through interlinks between identical categories. Therefore, by exploiting the category systems and language interlinks, we are able to obtain Wikipedia articles of the same topics across many languages.

Given the list of five categories for the examined languages, we crawl all the articles associated with their category descendants (i.e., subcategories, subsubcategories) in the hierarchy up to the depth of 6. After this step, we obtain at least 1,000 articles per category for each language. The obtained articles are cleaned by removing format elements (i.e., lists, images, URLs, and markups) to retain only textual data. Afterward, the articles are split into sentences and tokenized into words by Trankit (Nguyen et al., 2021), a multilingual text processing tool with state-of-the-art performance. The detailed list of subcategory URLs will be included in the final dataset package.

Given an article, a direct method for data annotation for ECI is to ask the annotators to label all the event mention spans and event mention pairs with causal relations. However, as the number of event mention pairs in a document grows quadratically with respect to the number of event mentions, a long Wikipedia article can easily overwhelm the annotators, thus affecting the quality of the annotated data. To address the issue, we split the Wikipedia articles into smaller chunks that span five consecutive sentences for separate annotation, following prior practices (Mostafazadeh et al., 2016; Ebner et al., 2020). These chunks are called documents in our dataset. In this way, the annotators only need to consider a shorter context at a time to enhance the attention and quality of annotated data.

2.3 Human Annotation

To annotate the obtained documents, we hire annotators from upwork.com, a crowd-sourcing platform with freelancers from all around the globe. We only consider candidates that are (1) native to the target language, (2) fluent in English,
Table 1: Kappa scores for the MECI dataset.

<table>
<thead>
<tr>
<th>Language</th>
<th>Event</th>
<th>Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danish</td>
<td>0.68</td>
<td>0.58</td>
</tr>
<tr>
<td>English</td>
<td>0.92</td>
<td>0.80</td>
</tr>
<tr>
<td>Spanish</td>
<td>0.84</td>
<td>0.66</td>
</tr>
<tr>
<td>Turkish</td>
<td>0.69</td>
<td>0.61</td>
</tr>
<tr>
<td>Urdu</td>
<td>0.65</td>
<td>0.75</td>
</tr>
</tbody>
</table>

(3) highly approved among the Upwork employers. We can access this information from the annotators’ profiles on the platform. The candidates are then given annotation guidelines and a test for performing both event annotation and event causality relation extraction tasks. The top two candidates are hired for each language. We use BRAT annotation tool for our annotation (Stenetorp et al., 2012) and illustrated in Figure 1.

Our annotation consists of two tasks, i.e., event mention annotation and event causal relation annotation. For each language, we annotate event causality relations over the outputs from event mention annotation (i.e., after event mention annotation has been completed and finalized for all documents). Given a sample of selected documents for a language, for each task, the two annotators for that language independently annotate event mentions/event causal relations for the documents. Afterward, the annotation conflicts will be presented to the annotators for further discussion and revision to produce the final version of annotated documents for the current task. This will help to ensure high agreement and consistency for our dataset.

2.4 Data Analysis

Table 1 presents our Kappa scores for annotation agreements of event mentions and event causality relations over different languages. Note that these scores are computed by comparing the independent annotations of the annotators over the documents before engaging in discussion to resolve conflicts. As can be seen, the scores are very close to either substantial or almost perfect agreement for all the tasks and languages, thus demonstrating the high quality of our created MECI dataset. We also find that non-English languages tend to have lower annotation agreement scores for both event mention and causality relation extraction tasks, thus highlighting the challenges of ECI for non-English languages and showing the importance of additional research for multilingual ECI.

In addition, Table 2 show other statistics for our MECI dataset. Across five languages, each document contains an average of 13.0 event triggers, which account for 2.6 event triggers per sentence. This reveals a challenge of MECI for ECI models that might need to handle the ambiguity due to the overlap of the context of event mention pairs in both sentence and document levels. Furthermore, each document contains approximately 3.1 relations on average; however, there is a discrepancy in event causality relation density in documents among languages. In particular, English and Turkish represent a much denser level of event causality relations per document than other languages, especially Spanish and Urdu. As such, the divergences in the density of event causality relations (and event mentions) pose another robustness challenge for ECI models that should be able to bridge the gaps and transfer event causal knowledge across languages.

Finally, Figure 3 presents the distributions of distances between two event mentions with causal relations in MECI. Distances are measured via the number of words.
causal event mention pairs over languages. For instance, the distances between event mentions for Danish and Urdu seem to be more distributed in the shorter ranges than those of English and Spanish. Such distribution differences require ECI models to introduce robust mechanisms to induce language-transferable representations for diverse causal contexts in cross-lingual learning for ECI.

Dataset Comparison: Table 2 also compares our MECI dataset with previous public datasets for ECI. Note that we focus on the datasets that explicitly consider causal relations between event mentions/triggers to make them comparable. It is clear from the table that our MECI dataset has a much larger scale with more event mentions, causal relations, and languages than all previous datasets for ECI. This will enable the training of larger models and a more comprehensive evaluation for ECI.

2.5 Challenges

Unlike most prior ECI datasets, our MECI dataset includes implicit causal relations, which allow causal relations to be derived from various implicit reasoning sources such as common-sense knowledge. This section illustrates some types of implicit reasoning for causal relations between events discovered in our dataset.

Implicit inference of causal cues: In the following example, considering two event mentions: “derailed” and “running into”, there is no triggering verb-based expression to signal the causal relationship between the two events. However, with the presence of the trailing comma between the two event mentions, our annotators can easily realize that the “derail” event is the cause of the “running into” event. As such, the annotators might have implicitly inferred the reduced relative clause “which makes the train” (presented in the brackets) between the two event mentions to make the causal decision. To this end, a model will also need to recognize such implicit reasoning cues based on the context to successfully perform ECI.

Implicit transitivity: Consider three event mentions “trouble”, “bail out”, and “killed” in the following example. The ground text explicitly expresses the causal relation “bail out” \(\rightarrow\) “killed” via the adverb “consequently”. However, there is no clear signal of the causality between “trouble” and “bail out”, which requires common-sense knowledge to successfully recognize for the causal order of such events, i.e., “trouble” \(\rightarrow\) “bail out”. This increases the difficulty for identifying the causality “trouble” \(\rightarrow\) “killed”, which might entail transitivity reasoning between implicit and/or explicit causal relations, i.e., “trouble” \(\rightarrow\) “bail out” and “bail out” \(\rightarrow\) “killed”.

... when his Spitfire developed engine trouble between the islands of Skiathos and Skópelos over the Aegean Sea. He attempted to bail out of the aircraft, but his altitude was too low for his parachute to open, and he was consequently killed.

3 Experiments

We randomly split the documents for each language in MECI into three separate parts with a ratio of 3/1/1 to serve as training, development, and test data respectively for experiments. To study the challenges of ECI presented in MECI, we evaluate the performance of the state-of-the-art models for ECI on this dataset. Each model will be comprehensively evaluated in the monolingual learning (i.e., trained and tested on data of the same language) and multilingual learning (i.e., trained and tested on the data of different language) settings with MECI.

3.1 ECI Models

We explore the following representative models for ECI in the literature:

PLM: This model is inherited from the BERT baseline in (Tran Phu and Nguyen, 2021). Given an input document \(D\), this model concatenates the words from all sentences and sends it into a pre-trained language model, e.g., BERT (Devlin et al., 2019), to obtain representation vectors for each word-piece using the hidden vectors in the last transformer layer. Afterward, given the spans \(A\) and \(B\) for two event mentions \(e_A\) and \(e_B\) of interest in \(D\), we compute the representations \(r_A, r_B\) for the two event mentions by averaging the representation vectors of the word pieces within the corresponding spans \(A\) and \(B\). Finally, we form an overall representation vector \(r_{A\rightarrow B} = [r_A, r_B, r_A - r_B, r_A * r_B]\) (\(\ast\) is the element-wise multiplication operation) for ECI.
Dataset Comparison

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Lang</th>
<th>#Documents</th>
<th>#Relations</th>
<th>#Events</th>
<th>Relation Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causal-TimeBank (Mirza et al., 2014)</td>
<td>English</td>
<td>100</td>
<td>318</td>
<td>11,000</td>
<td>Explicit</td>
</tr>
<tr>
<td>RED (O’Gorman et al., 2016)</td>
<td>English</td>
<td>95</td>
<td>*4,969</td>
<td>8,731</td>
<td>Explicit</td>
</tr>
<tr>
<td>BECaUSE-2.0 (Dunietz et al., 2017)</td>
<td>English</td>
<td>118</td>
<td>1,803</td>
<td>-</td>
<td>Explicit</td>
</tr>
<tr>
<td>CaTeRS (Mostafazadeh et al., 2016)</td>
<td>English</td>
<td>320</td>
<td>488</td>
<td>2,708</td>
<td>Explicit, Implicit</td>
</tr>
<tr>
<td>EventStoryline (Caselli and Vossen, 2017)</td>
<td>English</td>
<td>258</td>
<td>5,519</td>
<td>7,275</td>
<td>Explicit, Implicit</td>
</tr>
<tr>
<td>MECI</td>
<td>Danish</td>
<td>519</td>
<td>1,377</td>
<td>6,909</td>
<td>Explicit, Implicit</td>
</tr>
<tr>
<td>MECI</td>
<td>English</td>
<td>438</td>
<td>2,050</td>
<td>8,732</td>
<td></td>
</tr>
<tr>
<td>MECI</td>
<td>Spanish</td>
<td>746</td>
<td>1,312</td>
<td>11,839</td>
<td></td>
</tr>
<tr>
<td>MECI</td>
<td>Turkish</td>
<td>1,357</td>
<td>5,337</td>
<td>14,179</td>
<td></td>
</tr>
<tr>
<td>MECI</td>
<td>Urdu</td>
<td>531</td>
<td>979</td>
<td>4,975</td>
<td></td>
</tr>
<tr>
<td>MECI (total)</td>
<td>Various</td>
<td>3591</td>
<td>11,055</td>
<td>46,634</td>
<td></td>
</tr>
</tbody>
</table>

* designates the numbers that include other event-event relations, i.e., temporal and hierarchical relations.

Table 3: Performance of models on MECI (English) and EventStoryLine datasets.

<table>
<thead>
<tr>
<th>Model</th>
<th>MECI English</th>
<th>EventStoryLine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P R F</td>
<td>P R F</td>
</tr>
<tr>
<td>PLM</td>
<td>35.6 44.9 39.7</td>
<td>27.3 35.3 30.8</td>
</tr>
<tr>
<td>RichGCN</td>
<td>48.1 69.5 56.8</td>
<td>42.6 51.3 46.6</td>
</tr>
</tbody>
</table>

3.2 Experiment Setups

In the monolingual learning settings, for each language in MECI, we train the ECI models on the training data and evaluate model performance on the test data of the same language. We explore both multilingual PLMs, i.e., mBERT (Devlin et al., 2019) and XLMR (Conneau et al., 2020), and language-specific PLMs for the languages in MECI as the encoder for the ECI models in the experiments. In particular, we utilize the following language-specific PLMs that are available for MECI languages, i.e., BERT (Devlin et al., 2019)
for English; BotXO² for Danish, BETO (Cañete et al., 2020) for Spanish, BERTurk (Schweter, 2020) for Turkish, and UrduHack³ for Urdu.

The support of multiple languages with the same annotation guideline for event causality relations in MECI allows us to perform cross-lingual transfer learning evaluation for ECI models. In particular, for cross-lingual settings, ECI models are trained on the training data of one language (the source language); however, they are evaluated on test data of new target languages. In the experiments, we treat English as the source language and other languages in MECI as the target languages for cross-lingual evaluation. To facilitate the prediction over multiple languages, we leverage the multilingual PLMs mBERT and XLMR in cross-lingual experiments.

Hyper-parameters: We employ the same hyper-parameters from the original works for the ECI models: RichGCN (Tran Phu and Nguyen, 2021), and Know (Liu et al., 2021) in the experiments. The multilingual NLP toolkit TranKit (Nguyen et al., 2021) is leveraged to obtain dependency trees for sentences in multiple languages for the RichGCN model. Also, we utilize the multilingual version of ConceptNet (Speer et al., 2017) to retrieve augmented information for Know. Finally, we employ the base versions for all the multilingual and monolingual PLMs considered in this work.

3.3 Results

Monolingual Performance: Table 4 shows the performance of the three ECI models on the monolingual learning settings across all the languages with the multilingual PLMs: mBERT and XLMR.

Among the ECI models, we find that RichGCN maintains its top performance across all the languages and multilingual PLMs, thus demonstrating the effectiveness of its language-agnostic document structure to represent documents for ECI. Nonetheless, the best performance by RichGCN for English, Danish, Spanish, Turkish, and Urdu is 58.1, 38.9, 52.8, 56.7, and 45.1. These performance is far from being perfect, thus suggesting the challenges for ECI across languages and presenting ample research opportunities to improve the performance in the future. In addition, among the models, Know exhibits mixed performance with mBERT and worst performance with XLMR across languages. We attribute this phenomenon to the unstable quality of the concept retrieval with Concept-Net and context modification in Know that might exclude important causal context from the input texts to cause poor performance in different languages. Finally, comparing the multilingual PLMs, we find that XLMR performs significantly better than mBERT over all the languages with the PLM and RichGCN models, thus suggesting the benefits of XLMR for future ECI research.

Effects of language-specific PLMs: To better understand the effectiveness of PLMs for ECI, Table 5 reports the performance of PLM and RichGCN in the monolingual learning settings where language-specific PLMs for each language are employed as the encoder for the models. As can be seen, using the best model RichGCN and the best multilingual PLM XLMR as the anchors, ECI performance for English, Spanish and Turkish is very close with monolingual and multilingual PLMs (i.e., less than 2% difference in F1 scores). However, multilingual PLMs are substantially better than monolingual PLMs.

Table 4: Monolingual learning performance of ECI models on MECI with mBERT and XLMR.

Table 5: Monolingual learning performance of ECI models on MECI with language-specific PLMs.

²https://huggingface.co/Maltehb/danish-bert-botxo
³https://github.com/urduhack/urduhack
PLMs for Danish and Urdu (up to 7% difference in performance). This can be attributed to the lower resources in Danish and Urdu that hinder effective training for language-specific PLMs. With multilingual PLMs, such low-resource languages can benefit more from data in other languages to train multilingual PLMs.

Cross-lingual Performance: To investigate the transferability of ECI knowledge across languages, Table 6 presents the performance of the ECI models in the cross-lingual learning settings. Note that in these experiments English is the source language while other languages are the targets. Among the three models, RichGCN is still the best performer across all target languages. However, the model’s performance drops significantly for the three target languages Danish (by 4.4%), Spanish (by 19.5%), and Turkish (by 6.4%) compared to their monolingual performance with XLMR. This illustrates the challenges and necessity of further research on cross-lingual transfer learning for ECI that can now be enabled with our multilingual dataset.

Interestingly, compared to the monolingual settings, the performance on Urdu of RichGCN is slightly improved (by 0.4%) in the cross-lingual setting. One potential reason is due to the smallest size of the training data for Urdu in MECI that allows the larger English training data to train better models for Urdu test data. In addition, among the four target languages, we observe a wide range of cross-lingual performance from the model trained on English data, thus showing the diverse nature of data and languages in MECI for future research.

4 Related Work

As an important task in IE, ECI has attracted extensive research effort to develop effective models (Do et al., 2011; Hashimoto et al., 2014; Hidey and McKeown, 2016; Hu and Walker, 2017; Kadowaki et al., 2019; Zuo et al., 2020; Liu et al., 2021; Tran Phu and Nguyen, 2021; Man et al., 2022b). To support model development for ECI, several datasets have been introduced for this task, including PDTB (Prasad et al., 2008), Causal-TimeBank (Mirza, 2014), ECB (Cybul ska and Vossen, 2014), Richer Event Description (O’Gorman et al., 2016), BeCause (Dunietz et al., 2017), and EventStoryLine (Caselli and Vossen, 2017), CaTeRS (Mostafazadeh et al., 2016). However, these previous work and datasets only focus on English data, presenting a strong demand for new research and datasets on other languages for ECI.

To this end, there are a few efforts on creating causality corpora for other languages, such as German (Rehbein and Ruppenhofer, 2020), Arabic (Sadek et al., 2018) and Persian (Rahimi and Shamsfard, 2021). However, these corpus consider not only event mentions, but also entities, clauses, and sentences, thus, not directly solving ECI as we do. In addition, most existing annotation efforts for ECI focus on explicit event causality relationships. EventStoryLine (Caselli and Vossen, 2017) and CaTeRS (Mostafazadeh et al., 2016) are the only two prior datasets that also explore implicit causal relationships between events. However, they do not provide annotation for multiple languages as we do in MECI. Finally, we also note recent efforts on creating multilingual datasets for other NLP tasks, including event detection (Pouran Ben Veyseh et al., 2022), natural language understanding (e.g., slot filling) (FitzGerald et al., 2022), and acronym extraction (Veyseh et al., 2022).

5 Conclusion

We present a new dataset for event causality identification in five different languages across diverse typologies. The dataset is annotated consistently for all languages, offering a large number of event mentions/causal relations and covering four languages that have not been explored in the prior ECI resources. Our extensive experiments and analysis
reveal the quality and challenges of our dataset for ECI. In addition, our dataset enables cross-lingual transfer learning research that is not possible with current resources for ECI. In the future, we plan to extend the dataset to include more languages such as Arabic and Hindi to broaden its coverage.

Ethical Considerations

In this work we present a dataset annotated over the publicly accessible articles of wikipedia.org. Complying with the discussion presented by Benton et al. (2017), research with human subject information is exempted from the required full Institutional Review Board (IRB) review if the data is already available from public sources (as with Wikipedia) or if the identity of the subjects cannot be recovered.

Acknowledgement

This research has been supported by the Army Research Office (ARO) grant W911NF-21-1-0112 and the NSF grant CNS-1747798 to the IU-CRC Center for Big Learning. This research is also based upon work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via IARPA Contract No. 2019-1905160006 under the Better Extraction from Text Towards Enhanced Retrieval (BETTER) Program. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ARO, ODNI, IARPA, the Department of Defense, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein. This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

References

