
Proceedings of the 29th International Conference on Computational Linguistics, pages 2598–2607
October 12–17, 2022.

2598

KGE-CL: Contrastive Learning of Tensor Decomposition Based
Knowledge Graph Embeddings

Zhiping Luo1,4∗, Wentao Xu1,4∗, Weiqing Liu2, Jiang Bian2, Jian Yin3,4†, and Tie-Yan Liu2

1 School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
2 Microsoft Research Asia, Beijing, China

3 School of Artificial Intelligence, Sun Yat-sen University, Zhuhai, China
4 Guangdong Key Laboratory of Big Data Analysis and Processing, Guangzhou, China

{luozhp7@mail2,xuwt6@mail2,issjyin@mail}.sysu.edu.cn
{weiqing.liu, jiang.bian, tyliu}@microsoft.com

Abstract

Learning the embeddings of knowledge graphs
(KG) is vital in artificial intelligence, and can
benefit various downstream applications, such
as recommendation and question answering.
In recent years, many research efforts have
been proposed for knowledge graph embed-
ding (KGE). However, most previous KGE
methods ignore the semantic similarity be-
tween the related entities and entity-relation
couples in different triples since they sepa-
rately optimize each triple with the scoring
function. To address this problem, we pro-
pose a simple yet efficient contrastive learn-
ing framework for tensor decomposition based
(TDB) KGE, which can shorten the seman-
tic distance of the related entities and entity-
relation couples in different triples and thus im-
prove the performance of KGE. We evaluate
our proposed method on three standard KGE
datasets: WN18RR, FB15k-237 and YAGO3-
10. Our method can yield some new state-of-
the-art results, achieving 51.2% MRR, 46.8%
Hits@1 on the WN18RR dataset, 37.8% MRR,
28.6% Hits@1 on FB15k-237 dataset, and
59.1% MRR, 51.8% Hits@1 on the YAGO3-
10 dataset. Source codes and data of this paper
can be found at https://github.com/
Wentao-Xu/KGE-CL.

1 Introduction

The knowledge graph (KG) stores a vast number
of human knowledge in the format of triples. A
triple (h, r, t) in a KG contains a head entity h, a
tail entity t, and a relation r between h and t. The
knowledge graph embedding (KGE) aims to project
the massive interconnected entities and relations in
a KG into vectors or matrices, which can preserve
the semantic information of the triples. Learning
the embeddings of KG can benefit various down-
stream artificial intelligence applications, such as

∗The first two authors contributed equally.
†Corresponding author.

question answering (Huang et al., 2019), machine
reading comprehension (Yang and Mitchell, 2017),
image classification (Marino et al., 2016), and per-
sonalized recommendation (Wang et al., 2018).

In general, most of the KGE methods would de-
fine a scoring function f(hi, rj , tk), and the train-
ing target of KGE is maximizing the score of a
true triple (hi, rj , tk) and minimizing the score of
a false tripe (hi, rj , tx). In this way, the trained
embeddings of entities and relations in KG can pre-
serve the intrinsic semantics of a true triple. We
can mainly divide the existing KGE methods into
two categories. The first category is the distance
based (DB) methods, which use the Minkowski dis-
tance as scoring function to measure a triple’s plau-
sibility, include the TransE (Bordes et al., 2013),
TransH (Wang et al., 2014), TransR (Lin et al.,
2015), TransD (Ji et al., 2015) and TransG (Xiao
et al., 2016). The other category is the tensor de-
composition based (TDB) methods, which treat
a KG as a third-order binary tensor and use the
results of tensor decomposition as the representa-
tions of entities and relations. The TDB methods
include the CP (Hitchcock, 1927), DistMult (Yang
et al., 2015), RESCAL (Nickel et al., 2011) and
ComplEx (Trouillon et al., 2016).

However, existing methods only capture the se-
mantic connections among h, r and t in a same
triple. For example, the TransE optimize the dis-
tance between h + r and t, and the DistMult op-
timizie the dot product similarity among h, r and
t. Therefore, they overlook the connections be-
tween the related entities and entity-relation cou-
ples in different triples. In a KG, some entities
(entity-relation couples) that share the same entity-
relation couple (entity) are in the same type and
have semantic similarity. Capturing the seman-
tic similarity of these entities or couples can im-
prove the expressiveness of embeddings, which
is the performance in capturing semantic infor-
mation in KG (Dettmers et al., 2018; Xu et al.,

https://github.com/Wentao-Xu/KGE-CL
https://github.com/Wentao-Xu/KGE-CL

2599

New York

Los Angeles

City_of United States

Beau Biden

Children

Hunter Biden

Joe Biden

Head Entity Relation Tail Entity Head Entity Relation Tail Entity

New York City_of

Washington
, D.C.

Captical_of

United States

Children Beau Biden

Spouse Jill Biden

Joe Biden

Head Entity Relation Tail Entity Head Entity Relation Tail Entity

(a) Entities with the same couple. (b) Entities with the same couple.

(c) Couples with the same tail entity United States. (d) Couples with the same head entity Joe Biden.

Figure 1: The examples of triples that share the same entities or entity-relation couples.

2020). For instance, in Figure 1 (a), the entities
New York and Los Angeles share the same entity-
relation couple (City_of, United States). There-
fore, the entities New York and Los Angeles should
have a similar embedding. Besides, in Figure 1
(c) the couples (New York, City_of) and (Washing-
ton, D.C., Captical_of) share the same tail entity
United States. Thus the representations of these
two couples should also be similar.

To correlate the related entities and entity-
relation couples in different triples, we propose a
simple yet efficient contrastive learning framework
called KGE-CL for KGE, which is quite general for
existing TDB methods. We first construct the posi-
tive instances for those entities that share the same
entity-relation couple and those entity-relation cou-
ples that share the same entity. For example, the
positive instance of Beau Biden in Figure 1 (b)
is the Hunter Biden, and the positive instance of
(Children, Beau Biden) in Figure 1 (d) is (Spouse,
Jill Biden). Then we calculate the contrastive loss
on the original instance and the positive instances.
Due to the design of the contrastive learning frame-
work, we can also increase the distance between
unrelated entities and couples. Finally, since each
triple has four positive instances (corresponding
to the four examples in Figure 1), we design a
weighted contrastive loss to control the weights on
different positive instances’ loss flexibly.

We evaluate our KGE-CL method on the
KG link prediction task using the standard
WN18RR (Toutanova and Chen, 2015), FB15k-
237 (Dettmers et al., 2018) and YAGO3-
10 (Mahdisoltani et al., 2015) datasets. Our pro-
posed method achieves new state-of-the-art results
(SotA), obtaining 51.2% MRR, 46.8% Hits@1 on

the WN18RR dataset, 37.8% MRR, 28.6% Hits@1
on the FB15k-237 dataset, and 59.1% MRR, 51.8%
Hits@1 on the YAGO3-10 dataset. Moreover, We
apply several experiments to further analyze the
inner mechanism of our method. At last, to clearly
explain why our method outperforms existing meth-
ods, we conduct the visualization of the KGE of
our method and some compared methods using
T-SNE (van der Maaten and Hinton, 2008).

In summary, this paper’s contributions include:

• We propose KGE-CL, a simple yet efficient
contrastive learning framework for TDB KGE.
It can capture the semantic similarity of the re-
lated entities and entity-relation couples in dif-
ferent triples, thus improving the performance
of KGE.

• Our proposed KGE-CL framework can also
push the embeddings of unrelated entities and
couples apart in the semantic space.

• The experiment results and analyses confirm
the effectiveness of our KGE-CL method.

2 Related Work

In recent years, knowledge graph embedding
(KGE) becomes a pretty hot research topic since its
vital role in various downstream applications. We
can categorize the existing KGE techniques into
two categories: the distance based KGE and tensor
decomposition based KGE.

Distance based (DB) methods describe relations
as relational maps between head and tail enti-
ties. The TransE is a representative distance based
method, which uses the relations as translations
and its scoring function is: f(hi, rj , tk) = −||hi +

2600

rj − tk||22. To improve the performance of TransE,
many its variants that follow the same direction
were proposed, such as the TransH (Wang et al.,
2014), TransR (Lin et al., 2015), TransD (Ji et al.,
2015), TranSparse (Ji et al., 2016), TransG (Xiao
et al., 2016) and RotatE (Sun et al., 2019). How-
ever, the TransE and its extensions can not capture
the semantic similarity between the related enti-
ties and entity-relation couples in different triples.
For example, given two triples (h1, r1, t1) and
(h1, r1, t2), TransE can only close the distance be-
tween h1 + r1 and t1 (or t2) in the same triple, it
does not close the distance between t1 and t2, so the
representations t1 and t2 can in different directions.

Tensor decomposition based (TDB) methods
formulate the KGE task as a third-order binary
tensor decomposition problem. RESCAL (Nickel
et al., 2011) factorizes the j-th frontal slice of X as
Xj ≈ ARjA>, in which embeddings of head and
tail entities are from the same space. As the relation
embeddings in RESCAL are matrices containing
lots of parameters, RESCAL is easier to be over-
fitting and more difficult to train. DistMult (Yang
et al., 2015) simplifies the matrix Rj in RESCAL
to a diagonal matrix, while the RESCAL can only
preserve the symmetry of relations, limiting its ex-
pressiveness. To model asymmetric relations, Com-
plEx (Trouillon et al., 2016) extends DistMult to
complex embeddings and preserving the relations’
symmetry in the real part and the asymmetry in
the imaginary part. Moreover, the QuatE (Zhang
et al., 2019) further extends the ComplEx to hyper-
complex space to model more complicated relation
properties, such as the inversion. All of the Dist-
Mult, ComplEx, and QuatE are the variants of CP
decomposition (Hitchcock, 1927), which are in real,
complex, and hypercomplex vector spaces, respec-
tively. On the other hand, the TDB methods usually
suffer from an overfitting problem; thus, some work
is trying to improve the TDB methods from the as-
pect of regularizer, such as the N3 (Lacroix et al.,
2018) and DURA (Zhang et al., 2020a) regularizers.
These regularizers bring more significant improve-
ments than the original squared Frobenius norm
(L2 norm) regularizer (Nickel et al., 2011; Yang
et al., 2015; Trouillon et al., 2016). Nevertheless,
the TDB methods can only capture the similarity
among h, r and t in a same triple. For example,
the ComplEx-DURA (Zhang et al., 2020a) mainly
capture the semantics similarity between the cou-
ple (hi, rj)’s embedding hiRj and tail entity tk’s

embedding tk in a sample triple.
Since both of the DB and TDB methods can not

correctly capture the semantic similarity between
related entities and couples in different triples, we
propose our KGE-CL method to address the limita-
tions of existing work.

3 Preliminaries

3.1 Knowledge Graph Embedding
Knowledge Graph Embedding (KGE) The
knowledge graph embedding (KGE) is to learn the
representations (may be real or complex vectors,
matrices, and tensors) of the entities and relations.
Its target is that the learned entities’ and relations’
embeddings can preserve the semantic information
of the triples in knowledge graphs. Generally, the
KGE methods define a scoring functionf(hi, rj , tk)
to score the corresponding triple (hi, rj , tk), and
the score measure the plausibility of triples.
Tensor Decomposition Based (TDB) KGE TDB
methods like RESCAL (Nickel et al., 2011) and
ComplEx (Trouillon et al., 2016), regard a KG as
a third-order binary tensor X ∈ {0, 1}|E|×|R|×|E|.
The (i, j, k) entry Xijk = 1 if (hi, rj , tk) is a true
triple otherwise Xijk = 0. The Xj denotes the j-th
frontal slice of X , that is, the corresponding matrix
of the j-th relation. Generally, a TDB KGE model
factorizes Xj as Xj ≈ Re (HRjT

>
), where the i-

th (k-th) row of H (T) is hi (tk), Rj is a matrix
that represents relation rj , Re (·) and · are the real
part and the conjugate of a complex matrix, respec-
tively. Then the scoring functions of TDB KGE
methods is: f(hi, rj , tk) = Re (hiRjt

>
k). Note

that the real part and the conjugate of a real matrix
are itself. The goal of TDB models is to seek ma-
trices H,R1, . . . ,R|R|,T, such that Re (HRjT

>
)

can approximate Xj . In this paper, we aim to im-
prove the performance of existing TDB models,
such as the RESCAL and ComplEx models.

3.2 Contrastive Learning
Contrastive learning is an efficient representation
learning method that contrasts positive pairs against
negative pairs (Hadsell et al., 2006; He et al., 2020;
Chen et al., 2020; Khosla et al., 2020). The key idea
of contrastive learning is pulling the semantically
close pairs together and push apart the negative
pairs. The unsupervised contrastive learning frame-
work (Chen et al., 2020) would utilize the data
augmentation to construct positive pairs to calcu-
late the contrastive loss. The supervised contrastive

2601

learning framework (Khosla et al., 2020) calculates
the contrastive loss of all positive instances within
the same mini-batch. Motivated by these exiting
frameworks, we adopt the following function to
calculate the contrastive loss between an instance
zi and its all positive instances z+i :

CL
(
zi, z+i

)
=

−
∑

z+i ∈P (i) log
e
sim(zi,z

+
i)/τ∑

zj∈N(i) e
sim(zi,zj)/τ

| P (i) |
,

(1)
where zi and z+i are the representations of zi and
z+i , respectively. P (i) is the set of all positive
instances in the mini-batch, and N(i) is the set
of all negative instances in the batch. In our
work, we define the negative instances as the in-
stances that do not belong to the positive instances.
sim(zi, z+i) = zi · z+i is the dot product similarity.

4 Our Method: KGE-CL

In this section, we describe our KGE-CL method
that utilize the contrastive learning to capture the
semantic similarity of related entities and couples
in different triples. Our method is very general
and can be easily apply to arbitrary TDB meth-
ods. We can further name our KGE-CL method
as RESCAL-CL or ComplEx-CL when we use the
scoring function of RESCAL or ComplEx models.
In this section, we firstly present the contrastive
loss we designed for the KGE, then we introduce
the training objective of our method.

4.1 Contrastive Loss of KGE
In this subsection, we elaborate on the contrastive
loss that we designed for KGE.

Positive Instances The generation of positive in-
stances z+i for the instance zi is vital in contrastive
learning. Existing work in visual representation
learning (Wu et al., 2018; Chen et al., 2020; Chen
and He, 2020) used some data augmentation meth-
ods, such as cropping, color distortion, and rotation,
to take two random transformations of the same
images as zi and z+i . Meanwhile, in NLP, some
work (Wu et al., 2020; Meng et al., 2021) utilized
other augmentation techniques like word deletion,
reordering, and substitution. However, these data
augmentation methods are not proper to the KGE.
To capture the interactions between triples in a KG,
we design a new approach to construct the positive
instances for KGE. For a triple (hi, rj , tk), the cor-
responding scoring function of TDB methods is:

f(hi, rj , tk) = Re (hiRjt
>
k) = Re (〈hiRj , tk〉)

= Re (〈hi, tkR>j 〉).
(2)

We define 〈·, ·〉 as the inner product of two real
or complex vectors: 〈u, v〉 = uv>. The hiRj and
tkR>j are the representations of the entity-relation
couples (hi, rj) and (rj , tk), respectively. The
Equation 2 means that we can firstly compute ei-
ther the hiRj or tkR>j in the scoring function. For
a head entity hi, we define its positive instances
h+i as those head entities that share the same re-
lation and tail entity with hi. Similarly, we de-
fine the tail entity tk’s positive instances t+k with
those tail entities that share the same head entity
and relation with tk. For the entity-relation cou-
ples (hi, rj) or (rj , tk), the corresponding posi-
tive instances (hi, rj)+ or (rj , tk)+ is those entity-
relation couples that share the same tail entity
with (hi, rj) or head entity with (rj , tk). The
(hiRj)

+ and (tkR>j)+ are the representations of
positive instances (hi, rj)+ and (rj , tk)

+, respec-
tively. Therefore, given a true triple (hi, rj , tk),
our method would construct four kinds of positive
instances: h+i , t+k , (hi, rj)+ and (rj , tk)

+, which
are corresponding to the four examples in Figure 1.
As mentioned in Section 3.2, for an instance hi, we
will use all of its positive instances h+i in the same
mini-batch. Besdies, there may be no positive in-
stances in a mini-batch for some tripels. Therefore,
we will add a postive instance for each triple in the
mini-batch, where the added instance is randomly
sampled from training set. We will study the effect
of postive instances by experiment in Section 5.3.

Contrastive Loss Given a true triple (hi, rj , tk),
we use the Equation 1 to compute the contrastive
loss of four types of positive instances, and the
overall contrastive loss for a triple (hi, rj , tk) is:

Lc(hi, rj , tk) = CL(hi,h+
i) + CL(tk, t+k)

+ CL(hiRj , (hiRj)
+) + CL(tkR>j , (tkR>j)

+).

(3)

Theoretical Analysis To study how the Equa-
tion 3 takes effect, we apply a theoretical analysis
from the aspect of gradient. Taking the contrastive
loss term CL(hi,h+

i) as an example, the gradient

2602

Contrastive Loss WN18RR FB15k-237

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

CL(hi,h+
i) .509 .465 .527 .588 .376 .284 .412 .557

CL(tk, t+k) .509 .468 .425 .587 .376 .285 .411 .558
CL(hiRj , (hiRj)

+) .512 .469 .527 .595 .374 .282 .410 .557
CL(tkR>j , (tkR>j)+) .504 .462 .516 .580 .378 .286 .414 .559

Table 1: Link prediction results of RESCAL-CL that
merely uses one specific contrastive loss term.

of CL(hi,h+
i) to embedding hi is:

∂CL(hi,h+
i)

∂hi
=∑

h+i ∈P (i) ∂
(

hi · h+
i /τ − log

∑
hj∈N(i) e

(hi·hj/τ)
)

−|P (i)|∂hi

= −

∑
h+i ∈P (i) h+

i

τ |P (i)|
+

∑
hj∈N(i)

(
e(hi·hj/τ)hj

)
τ
∑

hj∈N(i) e
(hi·hj/τ)

.

(4)
Then when we update the embedding hi with the

gradient
∂CL(hi,h+

i)

∂hi
:

ht+1
i = hti − η

∂CL(hi,h+
i)

∂hi
, (5)

where η of learning rate for updating gradient.
The Equation 4 and Equation 5 show that the
embedding hti would update to the direction of
η
∑

h+i ∈P (i) h+
i

τ |P (i)|
, which is the mean value of posi-

tive instances’ embeddings h+
i . Meanwhile, the hti

would also update away from the weighted value
η
∑

hj∈N(i)

(
e(hi·hj/τ)hj

)
τ
∑

hj∈N(i) e
(hi·hj/τ)

of negative instances

hj . So our proposed contrastive loss Lc can not
only pull the related entities and entity-relation cou-
ples together in the semantic space but also push
the unrelated entities and couples apart.

Weighted Contrastive Loss There are four con-
trastive loss terms in Equation 3. We found that
different contrastive loss terms have different ef-
fects on different knowledge graphs during our re-
search process. This phenomenon happens may
because different knowledge graphs have diverse
graph properties, such as the ratio of the number
of entities to the number of relations, the num-
ber of triples compared with the number of en-
tities. Table 1 shows the results of RESCAL-
CL that merely uses one specific contrastive
loss term. In WN18RR dataset, using the term
CL(hiRj , (hiRj)

+) achieves the highest results,

while in FB15k-237 dataset, CL(tkR>j , (tkR>j)+)
is the best. Hence, we introduce a weighted con-
trastive loss, assigning a weight α∗ for each con-
trastive loss term, and α∗ is a hyper-parameter that
can be flexibly tuned for a specific KG. The con-
trastive loss Lwc (hi, rj , tk) after adding weights α∗
is:

Lwc (hi, rj , tk) =αhCL(hi,h+
i) + αtCL(tk, t+k)

+αhrCL(hiRj , (hiRj)
+)

+αtrCL(tkR>j , (tkR>j)
+).

(6)

4.2 Training Objective
Given a training triple (hi, rj , tk) in a KG, the in-
stantaneous loss of our framework on this triple is:

L(hi, rj , tk) = Ls + Lr + Lwc , (7)

where Ls is the loss that measures the discrepancy
between scoring function’s output f(hi, rj , tk) and
the label Xijk. Lr is the regularizer, and Lwc is
the weighted contrastive loss we introduced in Sec-
tion 4.1. It should be noted that the additionally
added postive instances in the mini-batch is only
used to calculate the contrastive loss Lwc and would
not used to calculate the Ls and Lr losses.

Ls Loss Many previous efforts used the ranking
losses (Bordes et al., 2013), binary logistic regres-
sion (Trouillon et al., 2016) or sampled multiclass
log-loss (Kadlec et al., 2017) to calculate the dis-
tance between the scoring function’s output and
the triple’s label. Since (Lacroix et al., 2018) had
verified the competitiveness of the full multiclass
log-loss, we utilize it as the Ls loss in Equation 7.

Regularizer Most of the previous work use
the squared Frobenius norm (L2 norm) regular-
izer (Nickel et al., 2011; Yang et al., 2015; Trouil-
lon et al., 2016) in their object functions. More
recently, some work proposed more efficient regu-
larizers to prevent the overfitting of KGE, such as
the N3 (Lacroix et al., 2018) and DURA (Zhang
et al., 2020a) regularizers. Since the (Zhang et al.,
2020a) had shown that DURA regularizer outper-
forms L2 and N3 regularizers, we use the DURA
as the regularizer Lr in our work.

5 Experiment

In this section, we present thorough empirical stud-
ies to evaluate and analyze our proposed frame-
work. We first introduce the experimental setting.

2603

WN18RR FB15k-237 YAGO3-10

#Entity 40,943 14,541 123,182
#Relation 11 237 37
#Train 86,835 272,115 1,079,040
#Valid 3,034 17,535 5,000
#Test 3,134 20,466 5,000

Table 2: Statistics of the datasets.

Then we evaluate our framework’s performance on
the task of link prediction. Besides, we further ana-
lyze the details of our promotion by comparing our
method with a baseline on the triples with different
relations, and we also study the effect of positive
instances to our framework. Finally, we visualize
the embeddings of our method and some baselines
to explain why our method outperforms baselines.

5.1 Exeprimental Setting

Dataset We use three standard KG datasets—
WN18RR (Toutanova and Chen, 2015), FB15k-237
(Dettmers et al., 2018), and YAGO3-10 (Mahdis-
oltani et al., 2015) to evaluate the performance of
KGE. We divide the datasets into training, validat-
ing, and testing sets using the same way of pre-
vious work. Table 2 shows the statistics of these
datasets. WN18RR, FB15k-237, and YAGO3-10
are extracted from WN18 (Bordes et al., 2013),
FB15k (Bordes et al., 2013), and YAGO3 (Mahdis-
oltani et al., 2015), respectively. Some previous
work (Toutanova and Chen, 2015; Dettmers et al.,
2018) indicated the test set leakage problem in
WN18 and FB15k, where some test triplets may
appear in the training dataset in the form of recip-
rocal relations. Therefore, they suggested using the
WN18RR and FB15k-237 datasets to avoid the test
set leakage problem.

Compared Methods We compare our KGE-CL
method with existing state-of-the-art KGE methods,
including CP (Hitchcock, 1927), RESCAL (Nickel
et al., 2011), ComplEx (Trouillon et al.,
2016), ConvE (Dettmers et al., 2018), Ro-
ratE (Sun et al., 2019), MuRP (Balazevic
et al., 2019), HAKE (Zhang et al., 2020b),
ComplEx-N3 (Lacroix et al., 2018), ROTH (Chami
et al., 2020), REFE (Chami et al., 2020),
CP-DURA (Zhang et al., 2020a), RESCAL-
DURA (Zhang et al., 2020a) and ComplEx-
DURA (Zhang et al., 2020a).

Datasets Methods d m τ αh αt αhr αtr

WN18RR RESCAL-CL 512 512 0.9 0 0 2.0 0
ComplEx-CL 2000 2048 0.5 0 0 0 2.0

FB15k-237 RESCAL-CL 512 512 0.9 0 0 0 2.0
ComplEx-CL 2000 2048 0.5 2.0 0 0 0

YAGO3-10 RESCAL-CL 512 512 0.9 0 0 0 1.0
ComplEx-CL 2000 2048 0.5 0 1.0 0 0

Table 3: The selection of the hyper-parameters of
RESCAL-CL and ComplEx-CL on different datasets.

Implementation Details We implement our
method base on the PyTorch library (Paszke et al.,
2019), and run on all experiments with a single
NVIDIA Tesla V100 GPU. We leverage Adagrad
algorithm (Duchi et al., 2011) to optimize the ob-
jective function in Equation 7. We tune our model
using the grid search to select the optimal hyper-
parameters based on the performance on the vali-
dation dataset. We search the embedding size d in
{256, 512, 1024} for RESCAL-CL and {200, 500,
1000, 2000} for ComplEx-CL. We search the tem-
perature τ in Equation 1 in {0.3, 0.5, 0.7, 0.9, 1.0}.
We search the weights αh, αt, αhr and αtr in Equa-
tion 6 in {0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5}.
The best choices of hyper-parameters, the number
of parameters, and the training time of RESCAL-
CL and ComplEx-CL on each dataset are listed in
Table 3. For a fair comparison, the RESCAL-CL
and ComplEx-CL have the same embedding size
as RESCAL-DURA and ComplEx-DURA, respec-
tively. Besides, the batch size is 512 for RESCAL-
CL and 200 for ComplEx-CL, and the learning rate
η as 0.1 for all methods. On WN18RR, we set the
number of training epochs as 50 for the ComplEx-
CL and 200 for the RESCAL-CL. On FB15k-237
and YAGO3-10, the number of training epochs is
200 for all methods.

5.2 Main Results

We evaluate the performance of our framework
on the link prediction task, which is a frequently-
used task to evaluate the KGE. Specifically, we
replace the head or tail entity of a true triple in the
test set with other entities in the dataset and name
these derived triples as corrupted triples. The link
prediction task aims to score the original true triples
higher than the corrupted ones. We rank the triples
by the results of the scoring function.

The evaluation metrics we used in the link predic-
tion are the MRR and Hits@N: 1) MRR: the mean
reciprocal rank of original triples; 2) Hits@N: the
percentage rate of original triples ranked at the top

2604

Methods WN18RR FB15k-237 YAGO3-10

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

CP .438 .414 .445 .485 .333 .247 .363 .508 .567 .494 .611 .698
RESCAL .455 .419 .461 .493 .353 .264 .385 .528 .566 .490 .612 .701
ComplEx .460 .428 .473 .522 .346 .256 .386 .525 .573 .500 .617 .703
ConvE .43 .40 .44 .52 .325 .237 .356 .501 .44 .35 .49 .62
RotatE .476 .428 .492 .571 .338 .241 .375 .533 .495 .402 .550 .670
MuRP .481 .440 .495 .566 .335 .243 .367 .518 - - -
HAKE .497 .452 .516 .582 .346 .250 .381 .542 .546 .462 .596 .694
ComplEx-N3 .491 .448 .505 .580 .366 .271 .403 .558 .577 .502 .619 .711
ROTH .496 .449 .514 .586 .344 .246 .380 .535 .570 .495 .612 .706
REFE .473 .430 .485 .561 .351 .256 .390 .541 .577 .503 .621 .712
CP-DURA .478 .441 .497 .552 .367 .272 .402 .555 .582 .511 .623 .708
RESCAL-DURA .498 .455 .514 .577 .368 .276 .402 .550 .579 .505 .619 .712
ComplEx-DURA .491 .449 .504 .571 .371 .276 .408 .560 .584 .511 .628 .713

RESCAL-CL .512 .468 .531 .597 .378 .286 .414 .559 .581 .507 .625 .713
ComplEx-CL .505 .458 .522 .595 .377 .285 .414 .564 .591 .518 .634 .722

Table 4: Link prediction results on WN18RR, FB15k-237 and YAGO3-10 datasets. We take the results of CP,
RESCAL, ComplEx, CP-DURA, RESCAL-DURA and ComplEx-DURA from the paper (Zhang et al., 2020a),
and the results of other baselines are from their original papers.

N in prediction. For both metrics, we remove some
of the corrupted triples that exist in datasets from
the ranking results, which is also called filtered set-
ting in (Bordes et al., 2013). For the metrics of
Hits@N, we use Hits@1, Hits@3, and Hits@10.

Table 4 shows the results of link prediction on
WN18RR, FB15K-237, and YAGO3-10 datasets.
Our proposed method achieves the highest results
on all datasets compared with the baselines. Specif-
ically, the RESCAL-CL achieves evidently better
results on the WN18RR dataset. The ComplEx-CL
outperforms the compared methods in the YAGO3-
10 dataset. On FB15k-237, the RESCAL-CL and
ComplEx-CL are both better than the RESCAL-
DURA and ComplEx-DURA, respectively. The
results of RESCAL-CL and ComplEx-CL verify
that correlating the entities and entity-relation cou-
ples in different triples can boost the performance
of KGE.

5.3 Model Analysis

Analyzing the Improvements To further ex-
plore why our method outperforms existing state-
of-the-art techniques, we compare our RESCAL-
CL method with the RESCAL-DURA on the triples
with different relations in WN18RR. Table 5 shows
the results of the comparison, and we found that
our RESCAL-CL is significantly better than the
RESCAL-DURA in 9 out of the 11 relations, ver-
ifying that the promotion of our framework is ex-
tensive and not just on some specific relations.

Relations #Train #Test RESCAL-DURA RESCAL-CL

MRR H@1 H@10 MRR H@1 H@10

_similar_to 80 3 0.446 0.333 0.667 0.756 0.667 1.000
_verb_group 1138 39 0.930 0.885 0.974 0.934 0.897 0.974
*domain_usage 629 24 0.400 0.354 0.542 0.447 0.396 0.542
*domain_region 923 26 0.329 0.269 0.442 0.360 0.289 0.500
_member_meronym 7402 253 0.251 0.164 0.415 0.318 0.221 0.506
_has_part 4816 172 0.223 0.151 0.375 0.245 0.174 0.384
_hypernym 34796 1251 0.193 0.140 0.288 0.204 0.152 0.296
_instance_hypernym 2921 122 0.431 0.348 0.603 0.461 0.369 0.631
_synset_domain* 3116 114 0.405 0.347 0.522 0.444 0.395 0.544
*related_form 29715 1074 0.957 0.951 0.967 0.959 0.954 0.969
_also_see 1299 56 0.606 0.554 0.679 0.621 0.571 0.696

Table 5: MRR, Hit@1 and Hit@10 results of RESCAL-
DURA and RESCAL-CL methods on the triples with
different relations in WN18RR dataset. We use * to
represent the abbreviation of some words in the relation
names. #Train and #Test are the number of triples with
the corresponding relations in the training and test set.

Effect of Positive Instances We apply an ab-
lation study to verify the effect of positive in-
stances. The variants of w/o Pos are the variants of
RESCAL-CL and ComplEx-CL, which remove all
original and additionally added positive instances
in a mini-batch when calculating the contrastive
loss. Table 6 shows the results of ablation study on
WN18RR and FB15k-237 datasets. From Table 6
we know the positive instance of KGE can signifi-
cantly improve the performance of KGE. Therefore,
the positive instances we constructed are effective
for the KGE.

Sparsity Analysis As mentioned by some other
work (Zhang et al., 2020a), the sparsity (the num-
ber of zero entries) of embeddings can save the

2605

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
asterid_dicot_genus
dilleniid_dicot_genus
mammal_genus
dicot_genus

class
city
bird_genus
fish_genus

(a) RESCAL

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
asterid_dicot_genus
dilleniid_dicot_genus
mammal_genus
dicot_genus

class
city
bird_genus
fish_genus

(b) RESCAL-DURA

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
asterid_dicot_genus
dilleniid_dicot_genus
mammal_genus
dicot_genus

class
city
bird_genus
fish_genus

(c) RESCAL-CL

Figure 2: The visualization of the entity-relation couples’ embeddings using T-SNE. A points represents a (hi, rj)
couple, and the points with the same color are the couples that connected with the same tail entity.

Methods Variants
WN18RR FB15k-237

MRR Hit@10 MRR Hit@10

RESCAL w/o Pos 0.501 0.581 0.368 0.551
-CL w/ Pos 0.512 0.597 0.378 0.559

ComplEx w/o Pos 0.493 0.579 0.370 0.560
-CL w/ Pos 0.505 0.595 0.377 0.564

Table 6: Effect of Positive Instances.

0 20% 40% 60% 80%
Sparsity on RESCAL

0.30

0.32

0.34

0.36

0.38

M
RR

RESCAL-CL
RESCAL-DURA
RESCAL

0 20% 40% 60% 80%
Sparsity on ComplEx

0.30
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38

M
RR

ComplEx-CL
ComplEx-DURA
ComplEx

Figure 3: Effect of sparsity on FB15k-237.

storage usage of KG, which is vital for large scale
real-world KGs. Therefore, we analyze the sparsity
of embeddings trainng by our contrastive learn-
ing (CL) framework. We follow the setting in
DURA (Zhang et al., 2020a), using a threshold
λ to mask a proportion of entries as zero, and ob-
serve the MRR results under different proportions.
Figure 3 shows the effect of embeddings’ sparsity
on FB15k-237. We can find that the embeddings
trained by CL have better results than DURA in the
sparse version, so CL can better reduce the storage
usage of KG and benifit the real-world KGs.

5.4 Visualization

To make our method more explainable, we visual-
ize the entity-relation couples via T-SNE (van der
Maaten and Hinton, 2008). Specifically, we ran-
domly pick up eight tail entities in WN18RR. We

find out the triples with these tail entities in the test
set, and extract (hi, rj) couples in these triples. We
visualize these couples’ embeddings trained by the
RESCAL, RESCAL-DURA, and RESCAL-CL.

Figure 2 shows the results of visualization. The
RESCAL method in Figure 2 (a) can not prop-
erly separate the couples with different tail entities.
Compared with RESCAL, the RESCAL-DURA
in Figure 2 (b) can relatively better separate the
couples with different tail entities. However, since
RESCAL-DURA can not capture the semantic sim-
ilarity of couples with the same entity, the distri-
bution of the couples connected with the same tail
entity is still wide. Our RESCAL-CL can well split
the couples in different types and shorten the dis-
tance of the couples connected with the same entity.
Hence, our RESCAL-CL can better preserve the
semantic information of the triples in knowledge
graphs and has a higher performance.

6 Conclusion and Future Work

In this paper, we propose a simple yet efficient
contrastive learning framework for TDB KGE to
improve its performance. Compared with the previ-
ous work, our method can pull the related entities
and entity-relation couples in different triples to-
gether in the semantic space and push the unrelated
entities and couples apart. The experimental results
on the standard datasets show that our method can
achieve new state-of-the-art results. Our analyses
further verify the effectiveness of our approach.

In the future, we plan to extend the critical in-
sights of contrastive learning to distance based
(DB) KGE methods and other representation learn-
ing problems in natural language processing.

2606

Acknowledgments

Zhiping Luo, Wentao Xu and Jian Yin are
supported by the National Natural Science
Foundation of China (U1811264, U1811262,
U1811261, U1911203, U2001211), Guangdong
Basic and Applied Basic Research Foundation
(2019B1515130001), Key-Area Research and
Development Program of Guangdong Province
(2018B010107005, 2020B0101100001).

References

Ivana Balazevic, Carl Allen, and Timothy Hospedales.
2019. Multi-relational poincaré graph embeddings.
In Advances in Neural Information Processing Sys-
tems 32, pages 4463–4473.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems 26, pages 2787–2795. Curran
Associates, Inc.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic
Sala, Sujith Ravi, and Christopher Ré. 2020. Low-
dimensional hyperbolic knowledge graph embed-
dings. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6901–6914, Online. Association for Computa-
tional Linguistics.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Xinlei Chen and Kaiming He. 2020. Exploring sim-
ple siamese representation learning. arXiv preprint
arXiv:2011.10566.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In Proceedings of
the 32th AAAI Conference on Artificial Intelligence,
pages 1811–1818. AAAI Press.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12(Jul):2121–2159.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pages 1735–1742. IEEE.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 9729–9738.

Frank L Hitchcock. 1927. The expression of a tensor
or a polyadic as a sum of products. Journal of Math-
ematics and Physics, 6(1-4):164–189.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping
Li. 2019. Knowledge graph embedding based ques-
tion answering. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data
Mining, pages 105–113.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In International
conference on machine learning, pages 448–456.
PMLR.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and
Jun Zhao. 2015. Knowledge graph embedding via
dynamic mapping matrix. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 687–696, Beijing,
China. Association for Computational Linguistics.

Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao. 2016.
Knowledge graph completion with adaptive sparse
transfer matrix. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 30.

Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst.
2017. Knowledge base completion: Baselines strike
back. arXiv preprint arXiv:1705.10744.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020.
Supervised contrastive learning. arXiv preprint
arXiv:2004.11362.

Timothee Lacroix, Nicolas Usunier, and Guillaume
Obozinski. 2018. Canonical tensor decomposition
for knowledge base completion. In Proceedings
of the 35th International Conference on Machine
Learning, pages 2863–2872. PMLR.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu,
and Xuan Zhu. 2015. Learning entity and relation
embeddings for knowledge graph completion. In
Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, page 2181–2187. AAAI
Press.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M.
Suchanek. 2015. YAGO3: A knowledge base from
multilingual wikipedias. In Seventh Biennial Con-
ference on Innovative Data Systems Research.

https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.18653/v1/2020.acl-main.617
https://doi.org/10.3115/v1/P15-1067
https://doi.org/10.3115/v1/P15-1067

2607

Kenneth Marino, Ruslan Salakhutdinov, and Abhinav
Gupta. 2016. The more you know: Using knowl-
edge graphs for image classification. arXiv preprint
arXiv:1612.04844.

Yu Meng, Chenyan Xiong, Payal Bajaj, Saurabh Ti-
wary, Paul Bennett, Jiawei Han, and Xia Song. 2021.
Coco-lm: Correcting and contrasting text sequences
for language model pretraining. arXiv preprint
arXiv:2102.08473.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In Proceedings
of the 28th International Conference on Machine
Learning, volume 11, pages 809–816. PMLR.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative
style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding
by relational rotation in complex space. In Interna-
tional Conference on Learning Representations.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In 3rd Workshop on Continuous Vector
Space Models and Their Compositionality.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric
Gaussier, and Guillaume Bouchard. 2016. Com-
plex embeddings for simple link prediction. In Pro-
ceedings of The 33rd International Conference on
Machine Learning, volume 48, pages 2071–2080.
PMLR.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi
Guo. 2018. Dkn: Deep knowledge-aware network
for news recommendation. In Proceedings of the
2018 world wide web conference, pages 1835–1844.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence,
page 1112–1119. AAAI Press.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua
Lin. 2018. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 3733–3742.

Zhuofeng Wu, Sinong Wang, Jiatao Gu, Madian
Khabsa, Fei Sun, and Hao Ma. 2020. Clear: Con-
trastive learning for sentence representation. arXiv
preprint arXiv:2012.15466.

Han Xiao, Minlie Huang, and Xiaoyan Zhu. 2016.
TransG : A generative model for knowledge graph
embedding. In ACL.

Wentao Xu, Shun Zheng, Liang He, Bin Shao, Jian Yin,
and Tie-Yan Liu. 2020. SEEK: Segmented embed-
ding of knowledge graphs. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 3888–3897, Online. As-
sociation for Computational Linguistics.

Bishan Yang and Tom Mitchell. 2017. Leveraging
knowledge bases in LSTMs for improving machine
reading. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1436–1446, Van-
couver, Canada. Association for Computational Lin-
guistics.

Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jian-
feng Gao, and Li Deng. 2015. Embedding entities
and relations for learning and inference in knowl-
edge bases. In Proceedings of the International Con-
ference on Learning Representations (ICLR) 2015.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019.
Quaternion knowledge graph embeddings. In Ad-
vances in Neural Information Processing Systems
32, pages 2735–2745.

Zhanqiu Zhang, Jianyu Cai, and Jie Wang. 2020a.
Duality-induced regularizer for tensor factorization
based knowledge graph completion. Advances in
Neural Information Processing Systems, 33.

Zhanqiu Zhang, Jianyu Cai, Yongdong Zhang, and Jie
Wang. 2020b. Learning hierarchy-aware knowledge
graph embeddings for link prediction. In Proceed-
ings of the Thirty-Fourth AAAI Conference on Artifi-
cial Intelligence. AAAI Press.

https://www.aclweb.org/anthology/2020.acl-main.358
https://www.aclweb.org/anthology/2020.acl-main.358
https://doi.org/10.18653/v1/P17-1132
https://doi.org/10.18653/v1/P17-1132
https://doi.org/10.18653/v1/P17-1132

	Introduction
	Related Work
	Preliminaries
	Knowledge Graph Embedding
	Contrastive Learning

	Our Method: KGE-CL
	Contrastive Loss of KGE
	Training Objective

	Experiment
	Exeprimental Setting
	Main Results
	Model Analysis
	Visualization

	Conclusion and Future Work

