CXR Data Annotation and Classification with Pre-trained Language Models
Nina Zhou, Ai Ti Aw, Zhuo Han Liu, Cher heng Tan, Yonghan Ting, Wen Xiang Chen, Jordan sim zheng Ting
Correct Metadata for
Abstract
Clinical data annotation has been one of the major obstacles for applying machine learning approaches in clinical NLP. Open-source tools such as NegBio and CheXpert are usually designed on data from specific institutions, which limit their applications to other institutions due to the differences in writing style, structure, language use as well as label definition. In this paper, we propose a new weak supervision annotation framework with two improvements compared to existing annotation frameworks: 1) we propose to select representative samples for efficient manual annotation; 2) we propose to auto-annotate the remaining samples, both leveraging on a self-trained sentence encoder. This framework also provides a function for identifying inconsistent annotation errors. The utility of our proposed weak supervision annotation framework is applicable to any given data annotation task, and it provides an efficient form of sample selection and data auto-annotation with better classification results for real applications.- Anthology ID:
- 2022.coling-1.247
- Volume:
- Proceedings of the 29th International Conference on Computational Linguistics
- Month:
- October
- Year:
- 2022
- Address:
- Gyeongju, Republic of Korea
- Editors:
- Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, Seung-Hoon Na
- Venue:
- COLING
- SIG:
- Publisher:
- International Committee on Computational Linguistics
- Note:
- Pages:
- 2801–2811
- Language:
- URL:
- https://aclanthology.org/2022.coling-1.247/
- DOI:
- Bibkey:
- Cite (ACL):
- Nina Zhou, Ai Ti Aw, Zhuo Han Liu, Cher heng Tan, Yonghan Ting, Wen Xiang Chen, and Jordan sim zheng Ting. 2022. CXR Data Annotation and Classification with Pre-trained Language Models. In Proceedings of the 29th International Conference on Computational Linguistics, pages 2801–2811, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
- Cite (Informal):
- CXR Data Annotation and Classification with Pre-trained Language Models (Zhou et al., COLING 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.coling-1.247.pdf
Export citation
@inproceedings{zhou-etal-2022-cxr,
title = "{CXR} Data Annotation and Classification with Pre-trained Language Models",
author = "Zhou, Nina and
Aw, Ai Ti and
Liu, Zhuo Han and
Tan, Cher heng and
Ting, Yonghan and
Chen, Wen Xiang and
Ting, Jordan sim zheng",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.247/",
pages = "2801--2811",
abstract = "Clinical data annotation has been one of the major obstacles for applying machine learning approaches in clinical NLP. Open-source tools such as NegBio and CheXpert are usually designed on data from specific institutions, which limit their applications to other institutions due to the differences in writing style, structure, language use as well as label definition. In this paper, we propose a new weak supervision annotation framework with two improvements compared to existing annotation frameworks: 1) we propose to select representative samples for efficient manual annotation; 2) we propose to auto-annotate the remaining samples, both leveraging on a self-trained sentence encoder. This framework also provides a function for identifying inconsistent annotation errors. The utility of our proposed weak supervision annotation framework is applicable to any given data annotation task, and it provides an efficient form of sample selection and data auto-annotation with better classification results for real applications."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhou-etal-2022-cxr">
<titleInfo>
<title>CXR Data Annotation and Classification with Pre-trained Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nina</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ai</namePart>
<namePart type="given">Ti</namePart>
<namePart type="family">Aw</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhuo</namePart>
<namePart type="given">Han</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cher</namePart>
<namePart type="given">heng</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonghan</namePart>
<namePart type="family">Ting</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen</namePart>
<namePart type="given">Xiang</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="given">sim</namePart>
<namePart type="given">zheng</namePart>
<namePart type="family">Ting</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chu-Ren</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansaem</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Key-Sun</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pum-Mo</namePart>
<namePart type="family">Ryu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Donatelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrizia</namePart>
<namePart type="family">Paggio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seokhwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Younggyun</namePart>
<namePart type="family">Hahm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhong</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tony</namePart>
<namePart type="given">Kyungil</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-Hoon</namePart>
<namePart type="family">Na</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Clinical data annotation has been one of the major obstacles for applying machine learning approaches in clinical NLP. Open-source tools such as NegBio and CheXpert are usually designed on data from specific institutions, which limit their applications to other institutions due to the differences in writing style, structure, language use as well as label definition. In this paper, we propose a new weak supervision annotation framework with two improvements compared to existing annotation frameworks: 1) we propose to select representative samples for efficient manual annotation; 2) we propose to auto-annotate the remaining samples, both leveraging on a self-trained sentence encoder. This framework also provides a function for identifying inconsistent annotation errors. The utility of our proposed weak supervision annotation framework is applicable to any given data annotation task, and it provides an efficient form of sample selection and data auto-annotation with better classification results for real applications.</abstract>
<identifier type="citekey">zhou-etal-2022-cxr</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.247/</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>2801</start>
<end>2811</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings %T CXR Data Annotation and Classification with Pre-trained Language Models %A Zhou, Nina %A Aw, Ai Ti %A Liu, Zhuo Han %A Tan, Cher heng %A Ting, Yonghan %A Chen, Wen Xiang %A Ting, Jordan sim zheng %Y Calzolari, Nicoletta %Y Huang, Chu-Ren %Y Kim, Hansaem %Y Pustejovsky, James %Y Wanner, Leo %Y Choi, Key-Sun %Y Ryu, Pum-Mo %Y Chen, Hsin-Hsi %Y Donatelli, Lucia %Y Ji, Heng %Y Kurohashi, Sadao %Y Paggio, Patrizia %Y Xue, Nianwen %Y Kim, Seokhwan %Y Hahm, Younggyun %Y He, Zhong %Y Lee, Tony Kyungil %Y Santus, Enrico %Y Bond, Francis %Y Na, Seung-Hoon %S Proceedings of the 29th International Conference on Computational Linguistics %D 2022 %8 October %I International Committee on Computational Linguistics %C Gyeongju, Republic of Korea %F zhou-etal-2022-cxr %X Clinical data annotation has been one of the major obstacles for applying machine learning approaches in clinical NLP. Open-source tools such as NegBio and CheXpert are usually designed on data from specific institutions, which limit their applications to other institutions due to the differences in writing style, structure, language use as well as label definition. In this paper, we propose a new weak supervision annotation framework with two improvements compared to existing annotation frameworks: 1) we propose to select representative samples for efficient manual annotation; 2) we propose to auto-annotate the remaining samples, both leveraging on a self-trained sentence encoder. This framework also provides a function for identifying inconsistent annotation errors. The utility of our proposed weak supervision annotation framework is applicable to any given data annotation task, and it provides an efficient form of sample selection and data auto-annotation with better classification results for real applications. %U https://aclanthology.org/2022.coling-1.247/ %P 2801-2811
Markdown (Informal)
[CXR Data Annotation and Classification with Pre-trained Language Models](https://aclanthology.org/2022.coling-1.247/) (Zhou et al., COLING 2022)
- CXR Data Annotation and Classification with Pre-trained Language Models (Zhou et al., COLING 2022)
ACL
- Nina Zhou, Ai Ti Aw, Zhuo Han Liu, Cher heng Tan, Yonghan Ting, Wen Xiang Chen, and Jordan sim zheng Ting. 2022. CXR Data Annotation and Classification with Pre-trained Language Models. In Proceedings of the 29th International Conference on Computational Linguistics, pages 2801–2811, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.