Improving Fake News Detection of Influential Domain via Domain- and Instance-Level Transfer

Qiong Nan, Danding Wang, Yongchun Zhu, Qiang Sheng, Yuhui Shi, Juan Cao, Jintao Li


Abstract
Social media spreads both real news and fake news in various domains including politics, health, entertainment, etc. It is crucial to automatically detect fake news, especially for news of influential domains like politics and health because they may lead to serious social impact, e.g., panic in the COVID-19 pandemic. Some studies indicate the correlation between domains and perform multi-domain fake news detection. However, these multi-domain methods suffer from a seesaw problem that the performance of some domains is often improved by hurting the performance of other domains, which could lead to an unsatisfying performance in the specific target domains. To address this issue, we propose a Domain- and Instance-level Transfer Framework for Fake News Detection (DITFEND), which could improve the performance of specific target domains. To transfer coarse-grained domain-level knowledge, we train a general model with data of all domains from the meta-learning perspective. To transfer fine-grained instance-level knowledge and adapt the general model to a target domain, a language model is trained on the target domain to evaluate the transferability of each data instance in source domains and re-weight the instance’s contribution. Experiments on two real-world datasets demonstrate the effectiveness of DITFEND. According to both offline and online experiments, the DITFEND shows superior effectiveness for fake news detection.
Anthology ID:
2022.coling-1.250
Volume:
Proceedings of the 29th International Conference on Computational Linguistics
Month:
October
Year:
2022
Address:
Gyeongju, Republic of Korea
Editors:
Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, Seung-Hoon Na
Venue:
COLING
SIG:
Publisher:
International Committee on Computational Linguistics
Note:
Pages:
2834–2848
Language:
URL:
https://aclanthology.org/2022.coling-1.250
DOI:
Bibkey:
Cite (ACL):
Qiong Nan, Danding Wang, Yongchun Zhu, Qiang Sheng, Yuhui Shi, Juan Cao, and Jintao Li. 2022. Improving Fake News Detection of Influential Domain via Domain- and Instance-Level Transfer. In Proceedings of the 29th International Conference on Computational Linguistics, pages 2834–2848, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
Cite (Informal):
Improving Fake News Detection of Influential Domain via Domain- and Instance-Level Transfer (Nan et al., COLING 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.coling-1.250.pdf
Code
 ICTMCG/DITFEND