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Abstract

Adversarial training, which minimizes the
loss of adversarially perturbed examples, has
received considerable attention. However,
these methods require modifying all model
parameters and optimizing the model from
scratch, which is parameter inefficient and
unfriendly to the already deployed models. As
an alternative, we propose a pluggable defense
module PlugAT, to provide robust predictions
by adding a few trainable parameters to the
model inputs while keeping the original model
frozen. To reduce the potential side effects of
using defense modules, we further propose a
novel forgetting restricted adversarial training,
which filters out bad adversarial examples that
impair the performance of original ones. The
PlugAT-equipped BERT model substantially
improves robustness over several strong base-
lines on various text classification tasks, whilst
training only 9.1% parameters. We observe that
defense modules trained under the same model
architecture have domain adaptation ability
between similar text classification datasets.

1 Introduction

Deep neural networks have achieved great success
in many fields, but they can be easily fooled
by adversarial examples crafted by impercepti-
ble perturbations on their normal counterparts
(Goodfellow et al., 2015). Recent studies have
shown that this phenomenon is widespread in NLP
tasks (Jia and Liang, 2017; Liang et al., 2018;
Wallace et al., 2019). In response to adversarial
attackers, various adversarial defense methods
are proposed to improve model robustness while
maintaining high accuracy on both clean and
adversarial examples (Dinan et al., 2019; Wang
et al., 2021; Zheng et al., 2022; Liu et al., 2022).
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Figure 1: Comparison of adversarial training and
our proposed PlugAT. Adversarial training requires
training the model from scratch and modifying all model
parameters, which is time-consuming and unfriendly
for the deployed model. The proposed defense module
improve the robustnesss of models in an extensible and
efficient manner.

Among them, adversarial training is generally
regarded as one of the strongest defense methods
(Madry et al., 2018).

A major drawback of adversarial learning based
methods is their high computational cost, as
they require multi-step gradient descent to gen-
erate adversarial examples (Andriushchenko and
Flammarion, 2020). The total time consumption
of adversarial training is much more than that
of standard training, and therefore some recent
works have attempted to reduce the computational
burden of adversarial training. FastAT (Wong
et al., 2020) uses weaker and cheaper adversarial
examples to replace strong ones and demonstrates
that extremely weak adversarial training is capable
of learning robust models. YOPO (Zhang et al.,
2019) limits the number of forward and backward
propagation without hurting the performance of the
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trained model. FreeAT (Shafahi et al., 2019) and
FreeLB (Zhu et al., 2020) leverage “free” strategies
to generate diversified adversarial examples at a
negligible additional cost compared to standard
training.

These efficient approaches mainly focus on re-
ducing the cost of generating adversarial examples,
which comes at the cost of training the model from
scratch with the parameters entirely modified. The
prohibitively huge training demand poses a severe
challenge for the deployment of practical robust
NLP systems. We seek to mitigate this problem by
learning external modules to achieve robust results.
This way, we only need to train and load a small
number of robustness-specific parameters without
retraining the entire model, greatly improving the
ease of use.

In this work, we propose PlugAT, a plug-and-
play module for transformer-based pre-trained
language models (PLMs) to defend against tex-
tual adversarial attacks. The defense module
consists of layerwise trainable parameters that
are prepended to the input sequence of each
PLM layer. By optimizing the defense module
with adversarial training, the model is guided to
response with robust outputs without updating
its parameters. To alleviate the possible damage
caused by training adversarial examples on the
performance of original examples, we propose
a novel forgetting restricted adversarial training,
which filter out “aggressive” adversarial examples.
PlugAT-equipped BERT has promising robust
performance on text classification tasks while
updating only 9.1% robustness-specific parameters,
reducing GPU time by about half compared to state-
of-the-art efficient adversarial training methods. In
addition, we prove that defense module has the
domain adaptation capability and can work when
transferred to similar tasks.Our codes are publicly
available at Github1. The main contributions of our
work are summarized as follows:

• A plug-and-play module PlugAT is proposed
to improve robustness of the deployed models
in an extensible and efficient manner.

• We propose the forgetting constrained ad-
versarial training to mitigate performance
degradation of the original examples caused
by training “aggressive” adversarial examples.

1https://github.com/ruizheng20/PlugAT

• We verify the effectiveness of the defense
module under three adversarial attacks and
enrich more potential applications of adversar-
ial training.

2 Related Work

2.1 Adversarial Attack

For the purpose of exploring robustness, adversarial
attack has been extensively studied for continuous
data of images (Goodfellow et al., 2015; Madry
et al., 2018) as well as discrete data of texts (Li
et al., 2018; Ren et al., 2019; Li et al., 2020), with
the latter aspect being more challenging than the
former. Textual attacks typically generate explicit
adversarial examples by swapping the components
of sentences into their counterparts, be it high in
similarity semantically (Ren et al., 2019) or in
terms of embedding (Li et al., 2020). TextFooler
(Jin et al., 2020) and TextBugger (Li et al., 2018)
leverages genetic algorithms to search for word-
level substitution that is semantically similar and
grammatically correct. To improve the success
rate of this kind of attack, Li et al. (2020) repeat
the process of searching and substituting until a
successful attack. In this work, we demonstrate
the effectiveness of our proposed method on the
mentioned adversarial attacks.

2.2 Adversarial Training

To improve models’ robustness against attacks,
adversarial defence has also attracted increasing
interests, the one of most powerful methods is
adversarial training. These methods generally
incorporate a min-max optimization between the
adversarial perturbations and the models by lim-
iting embedding-level perturbations to Frobenius
normalization balls, such as PGD (Madry et al.,
2018) and FreeLB (Zhu et al., 2020), or to token-
level normalization balls as implemented in TAVAT
(Li and Qiu, 2020). Since training a model
from scratch is time-consuming and effort-taking,
there has been a series of recent efforts to try to
improve the efficiency of adversarial training. Fast
adversarial training (Wong et al., 2020) uses weaker
and cheaper adversarial examples to replace strong
ones and achieves comparable performance. Free
adversarial training (Shafahi et al., 2019) recycles
the gradient information computed when updating
model parameters to generate adversarial examples
for free. These two methods eliminate the overhead
cost of generating adversarial examples. Zhang et
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al. (2019) restrict most of the forward and back
propagation within the first layer of the network
during adversary updates limits, which reduces the
total number of propagation and largely saves GPU
time. A more practical question is that adversarial
training needs to optimize all model parameters,
which is inefficient and unfriendly for the deployed
model in industrial applications.

2.3 Lightweight method

Researchers have long been studying how to effi-
ciently transfer pre-trained models to downstream
tasks (Ye et al., 2021; Ma et al., 2022). Adapter-
tuning (Houlsby et al., 2019) inserts small task-
specific trainable modules between the layers
of pre-trained language models, and only trains
these adapter modules while keeping the original
network frozen. Similarly , Side-tuning (Zhang
et al., 2020) trains a lightweight "side" network
that can be fused with a pre-trained network
through summation. Being even more lightweight,
Prefix-Tuning (Li and Liang, 2021) maintains
comparable performance while keeping model
parameters frozen and tuning only 0.1% of the
parameters to optimize a small continuous task-
specific vector. These methods have been proven
to reduce catastrophic forgetting in downstream
tasks, and because the parameters are optimized in
a limited space, they are more robust to adversarial
attacks (Han et al., 2021). We take inspiration from
these works and study how to use trainable modules
to conduct adversarial training in an efficient and
extensible method.

3 Methodology

In this section, we first detail the adversarial
training on PLMs and then introduce our proposed
plug-and-play defense module, PlugAT, which
helps PLMs to get rid of optimizing all model pa-
rameters from scratch when performing adversarial
training. Finally, we design a novel adversarial
training method based on gradient alignment
constraints and avoid performance degradation on
clean examples.

3.1 Preliminaries

For a classification dataset D = {X ,Y}, where
X is the set of input examples and Y is the set
of label classes, we have a Transformer-based
PLM with parameters θ, such as BERT to learn
a mapping function f : X → Y . Given an input

instance X ∈ X that consists of several tokens
X = {x1, . . . , x|X|} ∈ X , Y ∈ Y is the label, the
PLM first converts it into the embeddings:

Z0 = Embed(X) ∈ R|X|×d, (1)

where d is hidden size and Embed(·) denotes the
input embedding layer, then the hidden states are
encoded by l-th Transformer layer:

Zl = Transl(Zl−1) ∈ R|X|×d, (2)

where Transl(·) is l-th Transformer layer. Finally,
the hidden states ZL in last layer L is used to
decode Y .
Adversarial Training. Adversarial training is a
method for hardening classifiers against adversarial
attacks and involves training the network on
adversarially perturbed inputs. The adversarial
training solves a min-max optimization problem as
follows:

min
θ

E(X,Y )∼D max
∥Z′

0−Z0∥F≤ϵ
L(f(X ′, θ), Y ), (3)

where X ′ is an adversarial example of X and ϵ
is the maximum perturbation bound. The inner
maximization problem is to find an adversarial
example within the ϵ-ball centered at X in
the embedding space (∥Z ′

0 − Z0∥F ≤ ϵ) that
maximizes the classification loss. PGD applies
the K-step stochastic gradient descent to search for
the perturbation δ (Madry et al., 2018):

δk+1 =
∏

∥δ∥≤ϵ

(
δk + η

g (δk)

∥g (δk)∥

)
, (4)

where g (δk) = ∇δL (f(X + δk, θ), Y ), δk is the
perturbation in k-th step and

∏
∥δ∥≤ϵ(·) projects the

perturbation back onto the Frobenius normalization
ball. Then robust training optimizes the network on
adversarially perturbed input X ′ = X + δK . And
the objective of the outer minimization problem is
to optimize the model parameters so that the loss
on the adversarial examples is minimized.

In traditional adversarial training, all PLM
parameters θ need to participate in the optimization
starting from pre-training weights. It leads to the
following limitations in practice: 1) it is not cost
effective to retrain a large-scale deployed model for
additional robustness; 2) it requires more training
iterations (typically 3 times or more) compared to
fine-tuning, so optimizing all model parameters is
time-consuming and parametrically inefficient.
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Figure 2: Architecture of the defense module and its
integration with the Transformer-based model. Input
plugin can be regarded as “virtual inputs", which is
added before the original input tokens. Attention
plugin is inserted into all multi-head self-attention
layers. Then we conduct adversarial training on defense
modules to improve robustness.

3.2 PlugAT
We propose a plug-and-play adversarial defense
module as an efficient alternative for the deployed
model without modifying its structure and parame-
ters. Inspired by recent prompt-based approaches,
we design the defense module Pϕ with parameters
ϕ, which is a series of tunable vectors that are added
before inputs of all Transformer layers to guide
the model to make correct predictions in the face
of adversarial examples. Thus, the inputs of the
first Transformer layer (i.e., outputs of the input
embedding layer) is:

Z∗
1 = Embed(P0;Z0) ∈ R(N+|X|)×d, (5)

where P0 ∈ RN×d denotes the part of Pϕ in the
input embedding layer, N is the length of P0, and
Pϕ = {P0, P1, . . . , PL−1}. Then the modified
hidden states Z∗

l output by l-th layer is:

Z∗
l = Transl(Pl−1;Z

∗
l−1[i > N ]) ∈ R(N+|X|)×d, (6)

where Z∗
l−1[i > N ] is the hidden states at positions

larger than N , which is the hidden states of original
input tokens. However, previous work found these
prefix parameters are difficult to optimize, which
confirms similar observations in our experimental
section. To tackle this problem, the structure of
Pϕ consists of two parts: input plugin Iϕ and
attention plugin Aϕ = {A0, . . . , AL−1}. They

are parameters that affect the model behaviour
globally and locally, respectively. The architecture
of PlugAT is illustrated in Figure 2.
Input Plugin. Input plugin can be regarded
as “virtual input tokens” that is added before
original input embeddings, and its effects will
propagate upward to all Transformer layers. Thus,
the augmented input embeddings in (5) can be
expanded as:

Z∗
0 = Embed(Iϕ;X) ∈ R(NI+|X|)×d, (7)

where Iϕ is the “virtual input tokens” of length NI .
We optimize the parameters of the Iϕ only in the
embedding layer, while their hidden states in the
upper layers are automatically encoded by PLMs.
This means that Iϕ acts as a part of the original
inputs, providing global semantic information to
the model, which makes the optimization of Pϕ
more stable.
Attention Plugin. Attention plugin is composed
of feature vectors inserted into all multi-head
self-attention layers. The hidden states of l-th
Transformer layer is encoded as:

Z∗
l = Transl(Al−1;Z

∗
l−1[i > NA]) ∈ R(N+|X|)×d, (8)

where N = NI + NA and NA is the length
of attention plugin. The parameter of Aϕ are
independent at each layer, which avoids long-
range dependencies and introduces more trainable
parameters. The optimization of Al is sensitive
to the learning rate and initialization, thus Al

is reparameterized by a two-layer perceptron as
shown below:

Al = W2(tanh(W1A
′
l + b1) + b2), (9)

where W1 ∈ Rd′×d, W2 ∈ RNA×d′ , b1 ∈ Rd′ ,
b2 ∈ RNA×d and A′

l ∈ Rd are trainable parameters.

3.3 Forgetting of Clean Examples
Deep networks do not perform well in the se-
quential continual learning setting because they
forget the past learned tasks after learning new
ones. Therefore, it is necessary to overcome
the problem of forgetting clean samples caused
by using PlugAT in the deployed model. Our
goal is to understand the effect of training ad-
versarial examples {X ′

1, . . . , X
′
|D|} on their clean

counterparts {X1, . . . , X|D|}. We follow a similar
analysis procedure used in the influence function
to implement it (Koh and Liang, 2017). First,
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the parameter changes induced from the training
of adversarial example can be calculated by
reweighting (X ′, Y ) with some λ: ϕ̂λ,X′ ≜

argminϕ
1
|D|

∑|D|
i=1 L(X ′

i, ϕ) + λL(X ′, ϕ) where
L(X ′

i, ϕ) is a shorthand of L(f(X ′
i, ϕ), Yi). Atkin-

son et al. (1983) show that the influence of
reweighting X ′ on the parameters ϕ̂ is

dϕ̂λ,X′

dλ

∣∣∣
λ=0

= −H−1

ϕ̂
∇ϕL(X ′, ϕ), (10)

where Hϕ̂ ≜ 1
|D|

∑|D|
i=1∇2

ϕL(X ′
i, ϕ̂) is the positive

definite Hessian matrix. Second, we apply the
chain rule to measure the influence of reweighting
X ′ on the loss of X:

F(X ′, X) ≜
dL(X ′

i, ϕ̂λ,X′)

dλ

∣∣∣
λ=0

= ∇ϕL(X, ϕ̂)T
dϕ̂λ,X′

dλ

∣∣∣
λ=0

= −∇ϕL(X, ϕ̂)TH−1

ϕ̂
∇ϕL(X ′, ϕ̂).

(11)

F(X ′, X) > 0 means the training process
of the adversarial example X ′ will impair the
performance of the clean one X . Pezeshkpour
et al. (2021) show that Hessian information is
unnecessary and F(X ′, X) can be approximated
as F(X ′, X) ≈ −∇ϕL(X, ϕ̂)TL(X ′, ϕ̂). For
computational reasons, we use the subset of
parameters corresponding to the last linear layer to
compute F(X ′, X).

By combining the above constraints with adver-
sarial training in (3), we propose the forgetting
restricted adversarial training (FRAT) for our
defense module:

min
ϕ

E(X,Y )∼D max
∥Z′

0−Z0∥F≤ϵ
L(f(X ′, ϕ), Y ),

s.t. F(X ′, X) ≤ 0.
(12)

We use only the parameters of proposed defense
module to optimize the above objectives, while
keeping the original model frozen.

4 Experimental Setup

We first introduce the experimental setup, includ-
ing datasets, baselines and adversarial attackers
involved in our experiments.

4.1 Datasets
We compare the proposed method with baselines
on two widely applied benchmark corpora: IMDB
dataset (Maas et al., 2011) and SST-2 dataset
(Socher et al., 2013). Collected from online movie

Method: PlugAT

Input: Training dataset D = {(Xi, Yi)}Mi=1, per-
turbation bound ϵ, initialization of perturbation
σ, ascent step size η, ascent steps K, a deployed
model fθ, learning rate τ , defense module Pϕ
Output: defense module parameters ϕ

1: Initialize Dϕ

2: for epoch= 1, . . . , Nep do
3: for minibatch B ⊂ P do
4: δ0 ← 1

Nδ
Uniform(−σ, σ)

5: for k = 0, . . . ,K − 1 do
6: gk ← ∇δL(fθ(X + δ, ϕ), Y )

7: δk ←
∏

∥δ∥F≤ϵ(δk + η · gk/∥gk∥F )
8: if F(X + δk, X) > 0 do
9: δk ← δk−1

10: break
11: end if
12: end for
13: ϕ← ϕ− τ∇ϕL(fθ(X + δk, ϕ), Y )

14: end for
15: end for

16: return: ϕ

reviews, IMDB contains long samples created by
users, while SST samples are shorter (with an
average length of 19 words) and show a higher
diversity.

4.2 Baseline Methods

We select four adversarial defence methods as
baselines for a thorough comparison, including
three methods of adversarial training, one from
information-theoretic perspective, and one of
adversarial data augmentation.
PGD (Madry et al., 2018): A gradient-based
adversarial training method that uses multiple pro-
jected gradient ascent steps to find the adversarial
perturbations, which is then leveraged to update
the model parameters.
FreeLB (Zhu et al., 2020): A similar gradient-
based method with PGD while accumulating the
gradients and then back propagate once, resulting
in a faster process of searching for more effective
perturbations.
TAVAT (Li and Qiu, 2020): An token-aware
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adversarial training method that crafts fine-grained
perturbations by constraining them into a token-
level normalization ball.
InfoBERT (Wang et al., 2021): A learning
framework for robust fine-tuning from an
information-theoretic perspective, where two
mutual-information-based regularizers are used for
model training.

4.3 Adversarial Attack Methods

Three widely accepted attack methods are used to
verify the ability of our proposed method against
baselines.
TextBugger (Li et al., 2018): An adversarial attack
method that is applicable in both white-box and
black-box scenarios. Important words or sentences
(in white- or black-box scenario respectively) are
first discovered, and then an optimal perturbation is
chosen from the generated perturbations, or, for the
black-box situation, a scoring function is leveraged
to find important words to manipulate.
BERT-Attack (Li et al., 2020): A method using
BERT to generate adversarial text, and thus the
generated adversarial examples are fluent and
semantically preserved.
TextFooler (Jin et al., 2020): A comprehensive
attack paradigm that creates adversarial exam-
ples that maintain human prediction consistency,
semantic similarity, and language fluency. The
important words for the target model are first
identified and are then replaced with words, which
are semantically similar and grammatically correct,
until the prediction is altered.

4.4 Evaluation Metrics

The evaluation metrics adopted in our experimental
analyses are listed as follows. For a robust defense
method, higher accuracy under attack as well as
query times is expected.
Clean Accuracy (Clean%): The accuracy on
the clean test dataset. Accuracy under Attack
(Aua%): The model’s prediction accuracy facing
specific adversarial attacks. Number of Queries
(#Query) The average number of times the attacker
queries the model, which means the more average
query number is, the harder the defense model is to
be compromised. Trainable Params: The number
of parameters to be optimized. Speed UP: The
training speedups re reported against PGD and we
evaluate all the adversarial defense methods on an
NVIDIA RTX3090 GPU.

4.5 Implementation Details

Our implementation of PlugAT is mainly based on
BERT and FreeLB, so most of the hyperparameter
settings are based on these methods.2 We use
AdamW as our optimizers with the learning rate
1e−5, a batch size ∈ {16, 32} and a linear learning
rate decay schedule with a warm-up of 0.1. The
dropout rate is set to 0.1 for all task-specific
layers. For the defense module, NA = 35,
Ni = 5 and d′ = 512. We set the adversarial
perturbation step as 2, the perturbation step size as
0.03, the constrain bound of perturbations as 0.1,
the initial magnitudes of perturbations as 0.05. The
maximum number of epochs is set to 10. Since the
results of the SST-2 test set need to be submitted to
the GLUE evaluation server and cannot be used for
adversarial attacks, the results of SST-2 are tested
on the development set.

We implement three adversarial attack methods
using TextAttack framework and follow the default
parameter settings.3 We adopt a “free” strategy
similar to FreeLB (Zhu et al., 2020) to solve the
inner maximization problem in (12) and obtain
more adversarial examples. The clean accuracy
((Clean%)) is tested on the whole test/dev set.
Other adversarial robustness evaluation metrics
(e.g., Aua% and #Query) are evaluated on the
dev set for SST-2 and 1000 randomly selected
test samples for IMDB. We choose models trained
during the last period to compare the robustness.
All experiments are conducted using NVIDIA
RTX3090 GPUs.

4.6 Main Results

Defense Effectiveness. As illustrated in Table 1,
BERT equipped with our module with forgetting
restricted adversarial training has seen an increase
in robustness against attacks while maintaining
clean accuracy. The adversarial training based
approachs, e.g., FreeLB, achieve higher clean
accuracy than the baseline and our proposed
method, and their improvement in robustness is
also very insignificant. Generally, PlugAT lifts
BERT’s accuracy under attack from 4.9% to 20.8%
on SST-2 and 12.2% to 36.1% on IMDB when
attacked by TextFooler, which outperforms all of
the compared methods. The improvements indicate
that our proposed defense module indeed helps
BERT achieve greater robustness against attacks

2https://github.com/huggingface/transformers
3https://github.com/QData/TextAttack
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Dataset Methods
Trainable Speed

Clean%
TextFooler BERT-ATTACK TextBugger

Params Up Aua% #Query Aua% #Query Aua% #Query

SST-2

Fine-tune 109M − 92.5 4.9 98.5 2.9 114.2 26.3 48.6

PGD 109M 1× 92.9 16.5 122.3 11.8 156.8 43.4 56.1

FreeLB 109M 2.1× 93.1 14.4 123.8 10.2 154.6 42.4 54.9

TAVAT 109M 2.8× 93.1 13.5 117.8 9.9 147.9 38.5 49.7

InfoBERT 109M 1.3× 92.1 18.3 121.4 14.4 162.3 40.3 51.2

PlugAT 9.9M 4.1× 92.6 20.8 126.5 15.6 162.4 41.8 56.3

IMDB

Fine-tune 109M − 94.2 12.2 1209.8 7.8 1572.2 25.8 783.2

PGD 109M 1× 94.6 34.5 1616.0 28.6 2454.7 43.5 957.3

FreeLB 109M 3.4× 94.7 27.2 1479.1 22.6 1954.7 36.0 907.3

TAVAT 109M 4.1× 94.3 21.2 1417.7 17.6 1825.4 32.9 842.6

InfoBERT 109M 1.2× 95.2 32.4 1572.2 26.0 2326.0 43.6 969.8

PlugAT 9.9M 6.1× 93.9 36.1 1624.9 32.8 2777.1 44.7 1045.3

Table 1: Main results of the adversarial robustness evaluation on two text classification datasets. The defense module
PlugAT achieves better robustness with fewer trainable parameters and less GPU time. The best performance is
marked in bold.

compared with a vanilla BERT with the same kind
of adversarial training while maintaining the clean
accuracy to a large extent. Moreover, our proposed
method helps BERT to undergo adversarial training
by learning only 9.1% parameters, and the compu-
tational cost is also outstanding among the baseline
methods.

Dataset
Methods Clean%

TextFooler
Source Target Aua% #Query

SST-2 IMDB

Fine-tune 90.8 2.0 564.1

FreeLB 89.2 22.5 874.2

PGD 89.9 20.0 827.8

PlugAT 93.8 34.0 1536.0

IMDB SST-2

Fine-tune 86.7 3.2 87.7

FreeLB 87.8 4.5 93.5

PGD 88.5 5.4 100.8

PlugAT 91.4 10.3 113.1

Table 2: Experimental results when the models are
trained on the source dataset and then transferred to
the target dataset for testing. BERT (fine-tuned on the
target dataset) equipped with our module (trained on
the source dataset) improves robustness to a large extent
and with minor damage to the clean accuracy.

Transferability. The proposed method is com-
petitive even in challenging scenarios, with the
extra robustness obtained by our defense module
being able to generalize across datasets. To get
a clear view of this phenomenon, we conduct
transferability experiments on IMDB and SST-2
datasets, which is reported in Table 2. The results

indicate that the robustness of BERT with PlugAT
trained on one dataset can transfer to the other to
a degree. To be more specific, BERT with the
defense module trained on SST-2 dataset transfers
its ability of defending to IMDB and vice versa,
while still outperforming the BERT trained on
each dataset in all of the three metrics. This
suggests that the defense module shows strong
potential in transferability, the resource of which
is left for a more thorough investigation of future
work. We believe that the reason for the above
phenomenon may be that these two datasets are
similar. Another possible explanation is that
due to the transferability of adversarial examples,
the adversarial examples generated by adversarial
training may be similar on SST-2 and IMDB. These
adversarial examples may make the model more
robust on both SST-2 and IMDB.

4.7 Intrinsic Evaluation

Several variants that affect the performance of
our method are compared, including the length
of input or attention plugins. Besides, we conduct
ablation experiments to study the contribution of
each component in the proposed method.
Effect of Attention Plugin. A longer attention
plugin introduces more trainable parameters, en-
abling stronger expressive power. The lengths of
5 to 45 with an interval of 5 are experimented. As
reported in Figure 3, Aua% increases as the length
increases up to a threshold (about 35) and then a
slight performance drop occurs.
Effect of Input Plugin. We find that the input
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Figure 3: Length of attention plugins vs. performance
on SST-2 and IMDB datasets. Performance increases
up to a threshold 35 and then a slight performance drop
occurs.

plugin makes the training process more stable and
reduces the performance fluctuations. Figure 4
shows that generally, the existence of input plugin
enables the deployed model to initialize better with
a starting point at a higher accuracy both on clean
data and under attack.
Ablation Study. The results of ablation experi-
ments are demonstrated in Table 3. The results
show that the model’s clean accuracy decreases
when forgetting restricted adversarial training is
removed, indicating that forgetting restricted adver-
sarial training can effectively mitigate forgetting
on clean data. As we showed before, the global
information provided by the input plugin makes
the training more stable and slightly improves the
performance. The attention plugin, on the other
hand, provides more local information, making the
model more expressive.

5 Conclusion

In this paper, we focus on improving adversarial
training in the NLP field. We propose PlugAT,
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Figure 4: Full vs. without input plugin. The input plugin
enables the training process to be more stable and reach
a better performance.

Methods Clean%
TextFooler

Aua% #Query
PlugAT 92.6 20.8 126.5

w/o FRAT 91.5 21.5 128.2

w/o Input Plugin 92.1 16.7 114.6

w/o Attention Plugin 91.9 6.3 101.2

Table 3: Ablation study of PlugAT. We can observe that
forgetting restricted adversarial training (FRAT) can
effectively mitigate forgetting on clean data.

a plug-and-play module, as an effective solution
in terms of lifting model’s robustness while
preserving its clean accuracy as well as cutting
down on the overall computational cost. It
is discovered that despite learning 10× fewer
parameters than conventional adversarial training,
the proposed defense module also shows the po-
tential in transferability. Empirical evaluations on
two widely used benchmark datasets demonstrate
that training models with the defense module
costs half the GPU time while outperforming the
existing adversarial training methods. Extensive
experiments demonstrate that our proposed module
can significantly improve the model robustness and
transfer the performance across different datasets
effectively. Besides, we hope our work could
inspire more research on improving adversarial
training in NLP.
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