Doc-GCN: Heterogeneous Graph Convolutional Networks for Document Layout Analysis

Siwen Luo†, Yihao Ding †, Siqu Long†, Josiah Poon†, Soyeon Caren Han†, 2†
†The University of Sydney, ‡The University of Western Australia

{siwen.luo, yihao.ding, josiah.poon, caren.han}@sydney.edu.au, caren.han@uwa.edu.au, slon6753@uni.sydney.edu.au

Abstract

Recognizing the layout of unstructured digital documents is crucial when parsing the documents into the structured, machine-readable format for downstream applications. Recent studies in Document Layout Analysis usually rely on visual cues to understand documents while ignoring other information, such as contextual information or the relationships between document layout components, which are vital to boost better layout analysis performance. Our Doc-GCN presents an effective way to harmonize and integrate heterogeneous aspects for Document Layout Analysis. We construct different graphs to capture the four main features aspects of document layout components, including syntactic, semantic, density, and appearance features. Then, we apply graph convolutional networks to enhance each aspect of features and apply the node-level pooling for integration. Finally, we concatenate features of all aspects and feed them into the 2-layer MLPs for document layout component classification. Our Doc-GCN achieves state-of-the-art results on three widely used DLA datasets: PubLayNet, FUNSD, and DocBank. The code will be released at https://github.com/adlnlp/doc_gcn

1 Introduction

Digital documents (incl. Scanned Document Images and PDF files) are popular and convenient for storing written textual information, so almost 2.5 trillion documents worldwide are available in the digital format (Zhong et al., 2019). However, it is challenging to automatically recognize the layout and components of these unstructured digital documents and extract meaningful information using this format. For example, the financial office would require the scanned document image after their client signed. It is then crucial to recognize and extract the form component, such as the form title, person name, and the date the document is signed. This task is widely called Document Layout Analysis (DLA). The DLA task aims at understanding the documents from either 1) the physical analysis by detecting the document structure and the boundaries of each layout region or 2) the logical analysis by categorizing the detected layout components (segments) into the predefined document element classes, such as Title, Date, Author, and Figure (Binmakhashen and Mahmoud, 2019). In this research, we focus on the logical DLA task to classify the different layout components of PDF documents by understanding the relationships between components. Traditional deep learning-based DLA approaches mainly focus on processing visual features of layout components (Soto and Yoo, 2019; Augusto Borges Oliveira and Palhares Viana, 2017; Li et al., 2020a) using CNN-based models. Some recent studies started to use texts to solve the problem with the support of semantic information for each layout component (Li et al., 2020b; Xu et al., 2020). However, applying visual and textual features is not enough to analyze the characteristics and relations of document layout components in order to classify them. In this paper, we try to fill this gap by defining and proposing: 1) Layout Components Characteristic Representation and 2) Relation Representation between components.

The first question would be ‘What would be the best aspects to represent the characteristics of different document layout components?’ The text density/sparsity in each document component is a valuable feature. For example, a paragraph is more dense and usually contains more texts than a table. Moreover, syntactic information can be a key characteristic. It is obvious that a title mainly consists of noun phrases only, whereas a paragraph contains more sentences with the noun and verb phrases. Hence, in this research, apart from the common visual features and semantic text features
used by previous works, we propose the four major aspects, including text density, components appearance, syntactic and semantic information of textual contents, of each component in order to let the model conduct more comprehensive learning of the Documents properties. Another question would be ‘How to represent the relation among document layout components?’ Most DLA studies did not apply multiple aspects of features. Even if applied (Soto and Yoo, 2019; Xu et al., 2020), those features are integrated via simple concatenations and do not consider the influences of relationships between layout components on the classification performances. The characteristics of each component/segment are not enough to analyze the whole document layout and its corresponding components. Assume a ‘text’ component is detected based on its characteristics, but it is more accurate to classify it as the ‘figure caption’ if it is right above or below a figure. Thus, capturing and encoding the relationships between layout components is crucial for better layout analysis.

In this paper, we propose a novel Heterogeneous Graph Convolutional Network (GCN)-based DLA model, Doc-GCN, on a document page level, taking the document layout component (segment) as nodes in the graph and encoding the relative positional and structural relations between layout components. We first construct six different graphs, each encoding one aspect of features among the layout components’ syntactic, semantic, text density, and visual features. The syntactic and density aspects have two graph variants based on the different node embedding initialization methods. We use the GCN to update the node embedding by learning from its intimate neighbors, and the node-level pooling is then applied to integrate the graph variants. We concatenate the updated features of each aspect, getting the final layout component representation for the final classification of layout component types.

In summary, the contributions of our work are as follows:

• To the best of our knowledge, this is the first attempt to apply heterogeneous aspects of Document Layout Analysis.

• Doc-GCN is the first to propose using multi-aspect Graph Convolutional Networks for harmonizing the characteristics and relationships among document layout components (segments).

• Doc-GCN achieved the state-of-the-art performance on three widely used DLA datasets, PubLayNet, FUNSD, and DocBank.

2 Related Work

2.1 Document Layout Analysis

In the 1990s, rule-based methods (Klink and Kieninger, 2001; Fisher et al., 1990; Niyogi and Srihari, 1986) were widely used for the DLA tasks until the rise of deep learning. Zhong et al. (2019) used Faster RCNN (Ren et al., 2015) and Mask RCNN (He et al., 2017) as the basic deep learning models for DLA task. Recent works have extensions. Soto and Yoo (2019) added the size of the proposed Region of Interest (ROI) and normalized page number as the additional contextual information to the pooled feature vectors for both classification and regression network of Faster RCNN. Augusto Borges Oliveira and Palhares Viana (2017) proposed the 1-D CNN with the parallel operation of horizontal and vertical projection. Li et al. (2020a) proposed a model based on the Feature Pyramid Networks (FPN) object detector to solve the cross-domain document layout classifications.

Some DLA works integrated not only visual features but also textual features. Xu et al. (2020) proposed a pretrained model that integrated each token’s positional and text embeddings with the corresponding image embeddings. Xu et al. (2021) then applied additional pretraining tasks to enhance the multi-modality interactions further and used a spatial-aware attention mechanism to capture the relative positional relationship between different layout components. Gu et al. (2021) proposed the pretraining framework with a cross-attention transformer to boost the more substantial alignment between visual and textual features for each document element region. Li et al. (2020b) proposed a new dataset on the token-level where each token is annotated into a layout element class and experimented with this dataset with pretrained language models: BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) by inputting the sequence of token embeddings with the corresponding bounding boxes. Zhang et al. (2021) used a relation module upon the multimodal representations integrated from vision and semantic features to detect the relations between different components.

However, understanding the vision and semantic aspects of individual objects/regions is not enough to analyze the document layout and components.

2907
It is critical to consider the influences of relationships between document layout components. This is very similar to the trend that we can see in the most visual-language tasks (Long et al., 2022a). For example, the table caption should be around the table, and each component should be semantically related. Besides, it is also important to provide the better interpretation of the DLA prediction semantically, which has been considered as a lot of NLP tasks (Luo et al., 2021).

2.2 Graph Convolutional Networks

Graph Convolutional Networks (GCN) (Kipf and Welling, 2016) is a type of Graph Neural Network which applies convolution over graph structures, and it has been applied to many Natural Language Processing (NLP) tasks. For example, TextGCN (Yao et al., 2019) and MEGCN (Wang et al., 2022a) focus on the text classification by representing words and documents as graph nodes, and TensorGCN (Liu et al., 2020b) captures their relations in different aspects, including semantic, syntactic, and sequential aspects. D-GCN (Chen et al., 2020) performs sentiment analysis jointly with aspect extraction for graph-based modeling. Hier-GCN (Cai et al., 2020) proposes a hierarchical GCN to model the inner- and inter-relations among multiple aspect categories and sentiments. InducT-GCN (Wang et al., 2022b) enables the inductive GCN learning model, which improves the performance and reduces the time complexity.

Such graph-based approach is also widely applied to multimodal tasks, especially for visual question answering (Huang et al., 2020; Luo et al., 2020), text-to-image generation (Johnson et al., 2018; Han et al., 2020), and text-image matching (Liu et al., 2020a; Long et al., 2022b). It receives lots of attention in converting multiple modalities and aspects into structured graphs and enhancing joint learning. Some document-based analysis works, such as document dating (Vashishth et al., 2018), apply the GCN-based document dating approach by jointly exploiting the document’s syntactic and temporal graph structures. (Wang et al., 2022c) also uses two-stage GCN classifiers for line splitting and clustering for paragraph recognition in documents. In this work, we apply GCN to the DLA task by joint-learning different aspects of document layouts and capturing the relationship between layout components.

3 Doc-GCN

We propose a graph-based network Doc-GCN to encode and integrate the different aspects of document layout components. For each PDF page with N document layout components, we construct six different graphs: \(\mathcal{G}_{\text{den}1}, \mathcal{G}_{\text{den}2}, \mathcal{G}_{\text{appr}}, \mathcal{G}_{\text{syn}1}, \mathcal{G}_{\text{syn}2} \) and \(\mathcal{G}_{\text{semantic}} \), capturing the features of all the document layout components in the page from four aspects: density, appearance, syntactic and semantic. Each graph \(\mathcal{G}_i = (\mathcal{V}_i, \mathcal{E}_i, \mathcal{A}_i) \) consists of a set of nodes \(\mathcal{V}_i (|\mathcal{V}_i| = N) \), a set of edges \(\mathcal{E}_i \), and an adjacency matrix \(\mathcal{A}_i \in \mathbb{R}^{N \times N} \). We regard each layout component of the page as a node \(\nu_n \in \mathcal{V}_i \) in a graph. We segment each layout component by its bounding box. Different node embedding initialization and edge connection methods are applied for different graphs to match the characteristics of different feature aspects and capture different node relationships. The Graph Convolution Network (GCN) is then trained to update the node embeddings by learning from the neighbors.

3.1 Preliminaries

GCN (Kipf and Welling, 2016) is a convolutional neural network that operates directly on a graph to update the node embeddings by learning from the neighbors of each node. Given an initial node embedding matrix \(\mathcal{H}^0 \in \mathbb{R}^{N \times d_0} \) consisting of \(N \) node features of size \(d_0 \), GCN will conduct the propagation through layers based on the rule in Equation 1.

\[
\mathcal{H}^{l+1} = f \left(\mathcal{H}^l, \mathcal{A} \right) = \sigma \left(\hat{\mathcal{A}} \mathcal{H}^l W^l \right)
\] (1)

The node embedding matrix will be updated from \(\mathcal{H}^l \in \mathbb{R}^{N \times d_l} \) to \(\mathcal{H}^{l+1} \in \mathbb{R}^{N \times d_{l+1}} \) after every GCN layer, where \(l = 1, 2, ..., L \) indicates the layer number. \(\hat{\mathcal{A}} = \tilde{\mathcal{D}}^{-\frac{1}{2}} \tilde{\mathcal{A}} \tilde{\mathcal{D}}^{-\frac{1}{2}} \) represents the normalized symmetric adjacency matrix where \(\tilde{\mathcal{A}} = \mathcal{A} + \mathcal{I} \) and \(\mathcal{I} \) is the identity matrix for self-connection inclusion. \(\tilde{\mathcal{D}} \) is the diagonal node degree matrix with \(\tilde{\mathcal{D}}(i, i) = \Sigma_{j} \tilde{\mathcal{A}}(i, j) \) and \(W^l \in \mathbb{R}^{d_l \times d_{l+1}} \) is the trainable weight matrix associated with the \(l \)-th layer. \(\sigma \) denotes the activation function that can be different for different GCN layers.

3.2 Graphs Construction

3.2.1 Density-aspect Graph\(^1\)

Text density can be a valuable characteristic in distinguishing different document layout components. Details of density and appearance graph construction procedure can be found in Appendix A.1.
For example, a paragraph usually contains more compact texts than a table with text in a sparser distribution. We construct two density-aspect graphs G_{den1} and G_{den2} to encode the text density features of each layout component based on the text density ratio and the absolute character numbers respectively.

We calculate the text density ratio for each layout component as the division between the number of character-level tokens it contains and the area size of its bounding box as in Equation 2:

$$\text{Ratio}_{density} = \frac{\#\text{tokens}}{\text{Area size of bbox}}$$ (2)

Given a bounding box $bbox_n$ of a layout component with the top left coordinates (x_1^n, y_1^n) and the bottom right coordinates (x_2^n, y_2^n), the area size is calculated as $(x_2^n - x_1^n) \times (y_2^n - y_1^n)$. We use the positional encoding approach (Vaswani et al., 2017) to project the density ratio and the absolute character numbers of each layout component into a higher dimension $d_0 = 768$ to get the initialized node embedding for each density graph. The initial node embeddings of all N layout components in the document page form the initial node embedding matrices of G_{den1} and G_{den2}. As per Equation 3, t denotes the value of density ratio or the absolute character numbers of each node, and i is the ith dimension of f_n. The value at ith dimension would change along with the ordinate of i for any offset k.

$$f_n^{i} = \begin{cases}
\sin(\frac{t}{10000^{i/64}}), & i = 2k \\
\cos(\frac{t}{10000^{i/64}}), & i = 2k + 1
\end{cases}$$ (3)

We connect each node with its closest two neighbors with the smallest gap distance between their corresponding boxes. The edge weight is set to be the inverse distance value to emphasize the positional relationship between closer nodes. For a node v_n with bounding box $bbox_n$, we calculate its vertical distance values with other bounding box $bbox_m$ as $D_{V} = |y_1^m - y_2^m|$ or $D_{V} = |y_2^m - y_1^n|$ for bounding box that is vertically above it. This yields a set of distance values $\{D_{V1}, ..., D_{Vm}\}$, we connect the node v_n with other two nodes that have the two smallest values D_{V}. For a two-column PDF page, in addition to the set of D_{V}, we also calculate the horizontal distance value $D_{H} = |x_1^n - x_2^n|$ between $bbox_n$ and a horizontally aligned bounding box $bbox_j$ with coordinates $([x_1^j, y_1^j], [x_2^j, y_2^j])$ that has the smallest vertical gap distance. We then connect the node v_n with the other two nodes with the smallest distance values among the set of D_{V} and D_{H}.

3.2.2 Appearance-aspect Graph

To learn and encode the appearance properties, such as the color and font size, of layout components in a PDF page, we use a pretrained Faster-RCNN model to extract the appearance feature f_{app} based on the bounding box of layout component as the initial embedding for each node in G_{app}. We apply the same method of the edge connection and edge value setup as that for the density-aspect graphs in Section 3.2.1.

3.2.3 Syntactic-aspect Graph

To comprehensively encode the syntactic features, we use the constituency parser (Kitaev and Klein, 2018) to extract both the first-level and second-level syntactic parse of the texts in each layout component and construct two variants of the syntactic-aspect graphs: G_{syn1} and G_{syn2} respectively. The first-level parse for each layout component contains only one syntactic symbol, while the second-level parse could be a sequence of different syntactic

\[2\text{Details of syntactic and semantic graph generation can be found in Appendix A.2}\]
symbols. For example, for an article title ‘Vitrification preserves chromatin integrity, bioenergy potential and oxidative parameters in mouse embryos’ the first-level parse is (S) and the second-level parse is a sequence of (NP, VP). We use the same positional encoding as in Equation 3 to project a 768-dim vector S_w for each syntactic symbol based on their unique indexes, resulting in a sequence of syntactic embeddings $S_1, S_2, ..., S_w$ for the sequence of parse for each layout component. We then feed this syntactic embedding sequence to a single-layer Bi-LSTM and extract the last hidden state as the initialized node embedding for G_{syn2}. Since there is only one syntactic symbol for the texts in each layout component for the first-level parse, we pad the single symbol embedding to the sequence of length T for Bi-LSTM input, and get the initialized node embeddings for G_{syn1}. For both G_{syn1} and G_{syn2}, we connect every two nodes in the graph and set binary edge value {0, 1} based on the existence of a parent-child relationship between every two layout components.

For the training and validation, we use the parent-child relations extracted from the document source files provided in the datasets. We apply the OCR detection to the cropped image of each document layout component. Based on the detected OCR tokens and texts in document source files, we use fuzzy string matching and a reading order assigning method proposed by (Ding et al., 2022) to map each layout component with the corresponding element in the XML/Latex source files for PubLayNet/DocBank and identify the parent-child relations based on the hierarchical structure embodied in these source files. We then train a transformer-based relation prediction model on the training and validation set utilizing those extracted parent-child relations and predict the parent-child relations for the test set.

3.2.4 Semantic-aspect Graph

We use the pretrained BERT model (Devlin et al., 2019) to encode the semantic features of each layout component to construct G_{semc} and the hidden state of the special token [CLS], f_{semc}, as the initial node embedding of G_{semc}. We apply the same method for the edge connection and edge value setup as for the syntactic-aspect graphs in Section 3.2.3.

3.3 Graph Embedding Learning

After the graph construction, we apply the GCN learning on each graph to update the node representations that preserve the four aspects of the layout components’ properties by learning and integrating information from the neighbor nodes. For each graph G^i, $i \in \{den1, den2, appr, syn1, syn2, semc\}$ where p denotes the individual PDF page of the dataset, there is an associated initial node embedding matrix $H^0_i \in R^{N \times d}$, where $i \in \{den1, den2, appr, syn1, syn2, semc\}$ as defined in Section 3.2.

We feed these initialized node embedding matrices to GCN and update the weight matrices by optimizing the category prediction of each component node following the propagation rules as in Equation 1. After the training, we again feed each graph G^i into the trained GCN and extract the hidden layer node representations out, resulting in an updated node embedding matrix $O^p_i \in R^{N \times d}$ for each graph G^i, where N denotes the number of components in this PDF page and d is the dimension of each updated node embedding.

3.4 Multi-aspect Classification

To synthesize the six graphs to four graphs with each representing one aspect of the layout components, we apply a node-level max pooling P_m over the updated node embedding matrix $O^p_i \in R^{N \times d}$ of the graph variants for each type of the graphs, yielding the new node embedding matrix O^a_i of each aspect a, where $a \in \{density, appearance, syntactic, semantic\}$.

$$
O^a_i = \begin{cases}
P_m(O^p_{syn1}, O^p_{syn2}), & a = syntactic \\
P_m(O^p_{semc}, FC(H^p_{semc})), & a = semantic \\
P_m(O^p_{den1}, O^p_{den2}), & a = density \\
P_m(O^p_{appr}, FC(H^p_{appr})), & a = appearance
\end{cases}
$$

(4)

Specifically, as per Equation 4, for syntactic-aspect and density-aspect graphs, we conduct the max pooling over the learned node representations O^p_{syn1} (O^p_{den1}) and O^p_{syn2} (O^p_{den2}). For semantic-aspect and appearance-aspect graphs that consists of only one graph variant, we apply the node-level max pooling over the learned node embedding matrix O^p_{appr} and O^p_{semc} respectively with the initial node embedding matrix H^0_{appr} and H^0_{semc} that contains the fine-tuned f_{semc}, where $H^0_{appr} \in R^{N \times d_o}$ and $H^0_{semc} \in R^{N \times d_o}$ are projected into a d-dimensional features via fully connected layer FC.
first. We then concatenate each of the ultimate aspects features O^h_a and feed it to the 2-layer MLPs for the final classification of each document layout component in each PDF page. Our classifier is optimized based on the standard \textit{CrossEntropy}.

4 Evaluation Setup

4.1 Datasets

We conducted our experiments on three publicly available document layout analysis datasets: PubLayNet (Zhong et al., 2019), FUNSD (Jaume et al., 2019) and DocBank (Li et al., 2020b) to evaluate our model applicability. We adopted the same train/val/test split as the original dataset.\footnote{4The ratio of official data split can be found in each dataset description (train/val/test)}

PubLayNet annotates five different categories of layout components: \textit{Text, Title, List, Table and Figure}, for the 358,353 PDF document images in total (94%/3%/3%) collected from the PubMed.

FUNSD is a much smaller dataset extracted from the RVL-CDIP dataset (Harley et al., 2015) and contains 199 scanned PDF pages (75%/0/25%) of survey forms with only 4 different types of layout components: \textit{Header, Question, Answer and Other}.

DocBank has more sophisticated annotations for layout components than PubLayNet. It contains 500K PDF Document pages in total (80%/10%/10%)\footnote{DocBank only provides the data split ratio and the entire dataset. We split the entire dataset using the same split ratio.} with 13 different categories: \textit{Abstract, Author, Caption, Date, Equation, Figure, Footer, List, Paragraph, Reference, Section, Table and Title}. The PDF files of DocBank are collected from arXiv.com with their \LaTeX source.

Both **PubLayNet** and **FUNSD** include document page images, so it requires OCR\footnote{6We applied Google Vision API to PubLayNet dataset, and directly used OCR result from FUNSD dataset} in order to extract the texts for each layout component. We consider those two datasets as Image-based DLA. However, **DocBank** datasets contain PDF files with text source, which contains the text for each document, so we consider this as PDF file-based DLA. We test our Doc-GCN model with both Image-based and PDF-based DLA datasets.

4.2 Baselines

We compare our model with four widely-used Document Layout Analysis baselines.

Faster-RCNN (Ren et al., 2015) is an object detection model that unifies the region proposal network and the Fast R-CNN to extract the visual features from the proposed object regions for image object classification. For the FUNSD and DocBank, we fine-tuned the Faster-RCNN pretrained on the ImageNet with our training set and evaluated the test results. For the PubLayNet, we directly apply their Pretrained Faster-RCNN \footnote{7PubLayNet Faster-RCNN: https://github.com/ibm-aur-nlp/PubLayNet/}.

BERT (Devlin et al., 2019) is a language model which regards the DLA task as a text classification task by predicting the category of each layout component based on their sequence of text contents.

RoBERTa (Liu et al., 2019) has the same structure as BERT but is pretrained longer on the larger corpus that contains longer sequences. RoBERTa also applies a more dynamic masking pattern for masked language model tasks for pre-training.

LayoutLM (Xu et al., 2020) is a pretrained model that uses the BERT architecture to jointly learn visual aspects (position) and textual features of document layouts.

4.3 Implementation Details

For node features of Semantic graph and Appearance graph, we extract $[CLS]$ encoding ($\text{dim} = 768$) from pre-trained BERT\textit{BASE}. The Faster-RCNN with ResNet-101 pre-trained on ImageNet is used to extract the visual features ($\text{dim} = 2048$) to initialize the node embedding of the appearance graph. We set $T = 16$ for the sequence padding in syntactic graph construction. All the graphs are trained on 2-layer GCNs for 10 epochs with Adam optimizer using a learning rate of 1×10^{-4} for Semantic and Syntactic Graph and a learning rate of 0.001 for the other two graphs. We use \textit{ReLU} as the activation function for the first GCN layer, from which we extract our learned node representations. For final classification, we train the multi-aspect classifier with Adam optimizer using the learning rate of 2×10^{-5}, dropout of 0.1 and \textit{Tanh} as activation function. We trained the model using Intel(R) Xeon(R) CPU @ 2.00GHz and NVIDIA Tesla K80 24GB, which took around 15 hours, 72 hours and 8 mins\footnote{With more aspects covered, Doc-GCN training is still slightly smaller than other baselines recorded in each paper} for training PubLayNet, DocBank and FUNSD respectively. The number of trainable parameters is 126,401,796.
Table 1: F1 comparison for each component category of PubLayNet test set. The number(\#) and percentage (%) of each component is listed. The best models are bolded, and Doc-GCN always achieved the best for each component.

<table>
<thead>
<tr>
<th>Component</th>
<th>#</th>
<th>%</th>
<th>Faster-RCNN</th>
<th>BERT-base</th>
<th>RoBERTa-base</th>
<th>LayoutLM-base</th>
<th>Ours (Doc-GCN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text</td>
<td>91024</td>
<td>72.87</td>
<td>96.82</td>
<td>97.74</td>
<td>97.90</td>
<td>97.94</td>
<td>99.18</td>
</tr>
<tr>
<td>Title</td>
<td>19343</td>
<td>15.48</td>
<td>92.57</td>
<td>96.23</td>
<td>96.21</td>
<td>96.44</td>
<td>98.11</td>
</tr>
<tr>
<td>List</td>
<td>4913</td>
<td>3.93</td>
<td>49.51</td>
<td>76.73</td>
<td>79.08</td>
<td>76.21</td>
<td>88.11</td>
</tr>
<tr>
<td>Table</td>
<td>5018</td>
<td>4.02</td>
<td>95.49</td>
<td>91.61</td>
<td>91.30</td>
<td>91.30</td>
<td>98.16</td>
</tr>
<tr>
<td>Figure</td>
<td>4619</td>
<td>3.70</td>
<td>96.87</td>
<td>77.10</td>
<td>76.01</td>
<td>75.17</td>
<td>98.71</td>
</tr>
<tr>
<td>Overall</td>
<td>124917</td>
<td>100</td>
<td>95.96</td>
<td>95.96</td>
<td>96.08</td>
<td>96.03</td>
<td>98.63</td>
</tr>
</tbody>
</table>

Table 2: F1 comparison for each component of FUNSD test set. The number(\#) and percentage (%) of each component is listed. The best models are bolded, and Doc-GCN always achieved the best for each component.

<table>
<thead>
<tr>
<th>Component</th>
<th>#</th>
<th>%</th>
<th>Faster-RCNN</th>
<th>BERT-base</th>
<th>RoBERTa-base</th>
<th>LayoutLM-base</th>
<th>Ours (Doc-GCN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question</td>
<td>1077</td>
<td>46.18</td>
<td>74.40</td>
<td>87.23</td>
<td>87.02</td>
<td>87.08</td>
<td>89.32</td>
</tr>
<tr>
<td>Answer</td>
<td>821</td>
<td>35.21</td>
<td>69.26</td>
<td>82.44</td>
<td>84.11</td>
<td>81.72</td>
<td>88.81</td>
</tr>
<tr>
<td>Header</td>
<td>122</td>
<td>5.23</td>
<td>50.57</td>
<td>76.73</td>
<td>45.98</td>
<td>44.90</td>
<td>61.96</td>
</tr>
<tr>
<td>Other</td>
<td>312</td>
<td>13.38</td>
<td>65.12</td>
<td>57.33</td>
<td>56.20</td>
<td>56.19</td>
<td>72.76</td>
</tr>
<tr>
<td>Overall</td>
<td>2332</td>
<td>100</td>
<td>65.12</td>
<td>79.02</td>
<td>81.69</td>
<td>78.85</td>
<td>85.49</td>
</tr>
</tbody>
</table>

Table 3: F1 comparison for each component of DocBank test set. The number(\#) and percentage (%) of each component is listed. The best models are bolded, and Doc-GCN always achieved the best/the second best.

<table>
<thead>
<tr>
<th>Component</th>
<th>#</th>
<th>%</th>
<th>Faster-RCNN</th>
<th>BERT-base</th>
<th>RoBERTa-base</th>
<th>LayoutLM-base</th>
<th>Ours (Doc-GCN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>420</td>
<td>0.70</td>
<td>0</td>
<td>70.04</td>
<td>60.61</td>
<td>58.27</td>
<td>78.69</td>
</tr>
<tr>
<td>Author</td>
<td>484</td>
<td>0.80</td>
<td>0</td>
<td>72.56</td>
<td>82.01</td>
<td>69.07</td>
<td>79.46</td>
</tr>
<tr>
<td>Caption</td>
<td>1840</td>
<td>3.05</td>
<td>4.44</td>
<td>77.33</td>
<td>76.48</td>
<td>74.78</td>
<td>87.38</td>
</tr>
<tr>
<td>Date</td>
<td>87</td>
<td>0.14</td>
<td>0</td>
<td>67.76</td>
<td>88.74</td>
<td>85.35</td>
<td>91.02</td>
</tr>
<tr>
<td>Equation</td>
<td>11846</td>
<td>19.66</td>
<td>81.80</td>
<td>85.92</td>
<td>86.08</td>
<td>86.00</td>
<td>90.06</td>
</tr>
<tr>
<td>Figure</td>
<td>1650</td>
<td>2.74</td>
<td>68.74</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>99.97</td>
</tr>
<tr>
<td>Footer</td>
<td>529</td>
<td>0.88</td>
<td>0</td>
<td>69.08</td>
<td>68.67</td>
<td>65.56</td>
<td>84.48</td>
</tr>
<tr>
<td>List</td>
<td>958</td>
<td>1.59</td>
<td>0</td>
<td>54.72</td>
<td>55.01</td>
<td>50.43</td>
<td>65.79</td>
</tr>
<tr>
<td>Paragraph</td>
<td>35496</td>
<td>58.92</td>
<td>83.69</td>
<td>89.44</td>
<td>89.69</td>
<td>89.05</td>
<td>96.50</td>
</tr>
<tr>
<td>Reference</td>
<td>1237</td>
<td>2.05</td>
<td>0</td>
<td>88.51</td>
<td>88.30</td>
<td>89.61</td>
<td>88.83</td>
</tr>
<tr>
<td>Section</td>
<td>4891</td>
<td>8.12</td>
<td>78.52</td>
<td>84.04</td>
<td>84.79</td>
<td>83.90</td>
<td>95.93</td>
</tr>
<tr>
<td>Table</td>
<td>525</td>
<td>0.87</td>
<td>0</td>
<td>49.29</td>
<td>51.79</td>
<td>49.17</td>
<td>59.06</td>
</tr>
<tr>
<td>Title</td>
<td>286</td>
<td>0.47</td>
<td>0</td>
<td>51.49</td>
<td>68.58</td>
<td>55.53</td>
<td>84.85</td>
</tr>
<tr>
<td>Overall</td>
<td>60249</td>
<td>100</td>
<td>71.02</td>
<td>86.65</td>
<td>86.97</td>
<td>86.16</td>
<td>91.83</td>
</tr>
</tbody>
</table>

5 Results

5.1 Performance Comparison

We compared the performance of our proposed Doc-GCN with the baseline models on the test set of PubLayNet, FUNSD, and DocBank. The breakdown F1 scores on each layout component of the three datasets are provided in Table 1, 2 and 3 respectively.

We can see from the overall F1 scores that Doc-GCN outperforms all the baseline models on all datasets. It achieves a 98.63% F1 score in PubLayNet, which is 1.67% higher than the pre-trained Faster-RCNN. The performances of Faster-RCNN on FUNSD and DocBank are also much less competitive than models utilizing semantic features, which indicates the critical role of semantic information in the DLA task. Compared to BERT and RoBERTa, which only uses the semantic features, the F1 scores of our model are 2.55%, 3.8%, 4.86% higher than RoBERTa and 2.67%, 6.47%, 5.18% higher than BERT on PubLayNet, FUNSD and DocBank respectively. Especially for FUNSD, where there are only 144 training PDF pages, our model still achieves around 85%. Such results also prove the effectiveness of our multiple aspects of document layout component features for low-resource DLA datasets. Though LayoutLM also utilizes dual-aspect, visual aspect (position), and textual features, our Doc-GCN produces better
Table 4: F1 comparison of using different aspects of graph features on the validation set of three datasets. Syn, Sem, Dens and Appr stand for the Syntactic-based, Semantic-based, Density-based and Appearance-based graphs respectively. "O" and "X" refer to the existence and absence of corresponding graph features for the classification. The second best is underlined.

<table>
<thead>
<tr>
<th>Syn</th>
<th>Sem</th>
<th>Dens</th>
<th>Appr</th>
<th>PubLayNet</th>
<th>FUNSD</th>
<th>DocBank</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Precision</td>
<td>Recall</td>
<td>F1</td>
</tr>
<tr>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>67.81</td>
<td>72.92</td>
<td>63.45</td>
</tr>
<tr>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>96.70</td>
<td>96.37</td>
<td>96.48</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>50.65</td>
<td>71.17</td>
<td>59.18</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>96.53</td>
<td>95.95</td>
<td>96.15</td>
</tr>
<tr>
<td>X</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>98.42</td>
<td>98.36</td>
<td>98.38</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>98.49</td>
<td>98.45</td>
<td>98.46</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>98.61</td>
<td>98.58</td>
<td>98.59</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>98.64</td>
<td>98.65</td>
<td>98.63</td>
</tr>
</tbody>
</table>

Table 5: Performances comparison (F1 score%) based on large (L) pretrained models.

<table>
<thead>
<tr>
<th></th>
<th>PubLayNet</th>
<th>FUNSD</th>
<th>DocBank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bert-L</td>
<td>97.06</td>
<td>80.86</td>
<td>86.42</td>
</tr>
<tr>
<td>RoBERTa-L</td>
<td>96.15</td>
<td>79.47</td>
<td>86.67</td>
</tr>
<tr>
<td>LayoutLM-L</td>
<td>96.94</td>
<td>78.90</td>
<td>83.21</td>
</tr>
<tr>
<td>Doc-GCN-L</td>
<td>98.22</td>
<td>85.40</td>
<td>90.07</td>
</tr>
</tbody>
</table>

Overall F1 scores on all datasets. The superior performance of Doc-GCN demonstrates the effectiveness of the multiple aspects we applied. It indicates the positive contribution of graph representations and the joint GCN learning for integrating multiple features in the DLA task.

Furthermore, Doc-GCN shows significant performance improvement for some important layout component detection for each domain. It produces a better result in all components in PubLayNet, including the Title, Table, Figure, and the List that contains the structural text information, as is demonstrated in Table 1. Similar patterns can be also observed in Table 2 for FUNSD, especially with those important components of the forms: Header (section title - e.g. the aim of the form) and Answer (value - e.g. the content filled by the form user). For DocBank in Table 3, it shows that Doc-GCN works well with the essential components of scientific academic publication, including Abstract, Date, Section, Title. Those components are generally extracted for understanding the content of documents.

5.2 Comparison of Aspect Variants

To inspect the effectiveness of each aspect feature captured by Doc-GCN, we further compare its test performances by applying different combinations of aspect features. As seen in Table 4, using only semantic or appearance features already resulted in around 96% and 88% in F1 scores on PubLayNet and DocBank, respectively. For FUNSD, using only appearance features results in 70.63% in the F1 score, and using only semantic features is around 10% higher. The combination of semantic and appearance features improves the F1 scores to 98.38%, 84.41%, and 91.66% for PubLayNet, FUNSD, and DocBank, respectively. The semantic and appearance features seem to dominate the model’s performance in the DLA task, but the syntactic and density features also positively contribute to the performance. By adding syntactic features to the semantic and appearance features, the F1 scores on PubLayNet and FUNSD improve to 98.59% and 84.85%, respectively. Further, adding density features results in the best performances of 98.63% and 85.49%, respectively. For DocBank, adding density features improves the F1 score from 91.66% to 91.74% and finally reaches the best performance of 91.83% after further including the syntactic features. Though the density features and syntactic features contribute differently in the cases of different datasets, it is evident that the utilization of both density features and syntactic features is effective for performance improvement in the DLA task. Such results also indicate that our proposed aspects and their representations are practical for a more comprehensive representation of the characteristics of document layout components.

5.3 Impact of Pretrained Model Variants

To evaluate the effects of base and large pretrained models, we also tested the performances of
5.4 Impact of Pooling Variants

We applied the node-level pooling to integrate the node features over the two graph variants as the final features for each aspect representation. We compared Minimum, Average, and Max Pooling and used the method with the best results. From Table 6, we can see that for FUNSD and DocBank, Max Pooling resulted in the best performances. Especially for the FUNSD dataset, Max Pooling achieved almost 3% higher in F1 score compared to the results of using Minimum Pooling and Average Pooling. For PubLayNet, Minimum Pooling results in the best performance but is only 0.03% higher than Max Pooling. Hence, we used Max Pooling as the ultimate pooling method in our Doc-GCN.

Table 6: Performances comparison (F1 score%) of different node-level pooling methods on the test set.

<table>
<thead>
<tr>
<th>Pooling Type</th>
<th>PubLayNet</th>
<th>FUNSD</th>
<th>DocBank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min Pooling</td>
<td>98.67</td>
<td>82.77</td>
<td>90.27</td>
</tr>
<tr>
<td>Avg Pooling</td>
<td>97.90</td>
<td>82.04</td>
<td>89.04</td>
</tr>
<tr>
<td>Max Pooling</td>
<td>98.63</td>
<td>85.49</td>
<td>91.83</td>
</tr>
</tbody>
</table>

5.5 Case Study

We visualized the sample results for the top 3 models on a document page of PubLayNet in Figure 2. We can see that both RoBERTa and Faster-RCNN have wrongly recognized a Text into List, whereas our Doc-GCN has accurately recognized all components. This case further proves that simply considering the semantic or visual information is hard to distinguish the List and Text, indicating the importance of capturing the structural relationships between layout components for better performance.

6 Conclusion

We successfully handled the importance of the DLA task, Document Component/Segment Classification. It focused on extracting important information (i.e., Title, Author, Date, Form Answer) from the digital documents, including Scanned Document Images and PDF files. We propose a heterogeneous graph-based DLA model, Doc-GCN, which integrates text density, appearance, and syntactic and semantic properties of the Document layout components to generate comprehensive representations of documents. The graph structure also enables the model to capture and learn the relationships between the layout components when making predictions. Our model outperforms all baselines on three publicly available DLA datasets: PubLayNet, FUNSD, and DocBank.

We strongly hope that Doc-GCN will motivate and provide insights into the future integration of different modalities and aspects for the logical document layout analysis task.

More qualitative analysis for each of the three datasets can be found in Appendix B, and the superiority of understanding multiple aspects will be highlighted there.

Appendix: https://github.com/adlnlp/doc_gcn/tree/main/appendix
References

