@inproceedings{shirai-etal-2022-visual,
title = "Visual Recipe Flow: A Dataset for Learning Visual State Changes of Objects with Recipe Flows",
author = "Shirai, Keisuke and
Hashimoto, Atsushi and
Nishimura, Taichi and
Kameko, Hirotaka and
Kurita, Shuhei and
Ushiku, Yoshitaka and
Mori, Shinsuke",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.315",
pages = "3570--3577",
abstract = "We present a new multimodal dataset called Visual Recipe Flow, which enables us to learn a cooking action result for each object in a recipe text. The dataset consists of object state changes and the workflow of the recipe text. The state change is represented as an image pair, while the workflow is represented as a recipe flow graph. We developed a web interface to reduce human annotation costs. The dataset allows us to try various applications, including multimodal information retrieval.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shirai-etal-2022-visual">
<titleInfo>
<title>Visual Recipe Flow: A Dataset for Learning Visual State Changes of Objects with Recipe Flows</title>
</titleInfo>
<name type="personal">
<namePart type="given">Keisuke</namePart>
<namePart type="family">Shirai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Atsushi</namePart>
<namePart type="family">Hashimoto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taichi</namePart>
<namePart type="family">Nishimura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hirotaka</namePart>
<namePart type="family">Kameko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuhei</namePart>
<namePart type="family">Kurita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoshitaka</namePart>
<namePart type="family">Ushiku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shinsuke</namePart>
<namePart type="family">Mori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a new multimodal dataset called Visual Recipe Flow, which enables us to learn a cooking action result for each object in a recipe text. The dataset consists of object state changes and the workflow of the recipe text. The state change is represented as an image pair, while the workflow is represented as a recipe flow graph. We developed a web interface to reduce human annotation costs. The dataset allows us to try various applications, including multimodal information retrieval.</abstract>
<identifier type="citekey">shirai-etal-2022-visual</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.315</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>3570</start>
<end>3577</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Visual Recipe Flow: A Dataset for Learning Visual State Changes of Objects with Recipe Flows
%A Shirai, Keisuke
%A Hashimoto, Atsushi
%A Nishimura, Taichi
%A Kameko, Hirotaka
%A Kurita, Shuhei
%A Ushiku, Yoshitaka
%A Mori, Shinsuke
%S Proceedings of the 29th International Conference on Computational Linguistics
%D 2022
%8 October
%I International Committee on Computational Linguistics
%C Gyeongju, Republic of Korea
%F shirai-etal-2022-visual
%X We present a new multimodal dataset called Visual Recipe Flow, which enables us to learn a cooking action result for each object in a recipe text. The dataset consists of object state changes and the workflow of the recipe text. The state change is represented as an image pair, while the workflow is represented as a recipe flow graph. We developed a web interface to reduce human annotation costs. The dataset allows us to try various applications, including multimodal information retrieval.
%U https://aclanthology.org/2022.coling-1.315
%P 3570-3577
Markdown (Informal)
[Visual Recipe Flow: A Dataset for Learning Visual State Changes of Objects with Recipe Flows](https://aclanthology.org/2022.coling-1.315) (Shirai et al., COLING 2022)
ACL