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Abstract

The possible consequences for the same con-
text may vary depending on the situation we
refer to. However, current studies in natural
language processing do not focus on situated
commonsense reasoning under multiple possi-
ble scenarios. This study frames this task by
asking multiple questions with the same set of
possible endings as candidate answers, given a
short story text. Our resulting dataset, Possible
Stories, consists of more than 4.5K questions
over 1.3K story texts in English. We discover
that even current strong pretrained language
models struggle to answer the questions consis-
tently, highlighting that the highest accuracy in
an unsupervised setting (60.2%) is far behind
human accuracy (92.5%). Through a compar-
ison with existing datasets, we observe that
the questions in our dataset contain minimal
annotation artifacts in the answer options. In
addition, our dataset includes examples that re-
quire counterfactual reasoning, as well as those
requiring readers’ reactions and fictional infor-
mation, suggesting that our dataset can serve
as a challenging testbed for future studies on
situated commonsense reasoning.

1 Introduction

Commonsense reasoning, inclusive of counterfac-
tual, abductive, and monotonic reasoning, is a core
element of language understanding. Researchers
are interested in whether these abilities can be
learned in systems, and several benchmarks have
been proposed to investigate machine common-
sense reasoning (Huang et al., 2019; Sap et al.,
2019; Aggarwal et al., 2021; Saha et al., 2021).
Recent pretrained models have shown competitive
results (Khashabi et al., 2020; Lourie et al., 2021).

Commonsense reasoning has often been framed
as a task to infer whether candidate answers are
plausible, such as in the multiple-choice format
(Talmor et al., 2019; Sakaguchi et al., 2020). The
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Original Context
Cindy was planning to grow a lot of vegetables this year. 
She planted vegetable seedlings in her garden. Cindy 
knew there were hungry groundhogs in the area. She 
put up a short fence around her garden to protect it.

Alternative Ending Collection
B: All of the ground animals were kept out, but 

something was still eating her vegetables.
C: She put spikes on the fence to avoid groundhogs 

and it worked.
D: No groundhogs climbed over the fence and Cindy 

had a good harvest in the fall.

Question Writing
Q1: Which one of the following is most 

likely to happen after this if there were 
other hungry animals? à Option B

Q2: What would be the most positive 
outcome for Cindy's crops? à Option D

Original Ending
A: The groundhogs climbed over the fence and ate her 

seedlings.

Figure 1: Overview of Possible Stories and its cre-
ation process. We ask crowdworkers to produce al-
ternative endings given a story text, and then write
multiple-choice questions that have a single correct an-
swer among the original and three collected endings.

difference between plausible and implausible an-
swers is expected to be salient enough that it can be
established as a classification task. However, when
making day-to-day decisions, people consider sev-
eral plausible choices, rather than clearly plausible
and implausible ones, depending on one’s situa-
tion and method of thinking. However, the tasks
concerning conditions under multiple plausible sce-
narios are few, and their domains are limited to, for
example, factual information that differs accord-
ing to place and time (Zhang and Choi, 2021) or
human behaviors that are either normative or di-
vergent (Emelin et al., 2021). Another example
is the natural language inference or commonsense
reasoning task that considers variations in human
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opinions (Zhang et al., 2017; Chen et al., 2020b),
which allows for the differences in annotations due
to one’s mentality (Pavlick and Kwiatkowski, 2019;
Meissner et al., 2021). Our aim here is to inter-
rogate these types of situated reasoning in more
comprehensive settings, such as in story texts.

To assess the possible extent of situated reason-
ing in machines, we introduce Possible Stories,
a benchmark consisting of 4,533 multiple-choice
questions over 1,313 passages in English, to evalu-
ate commonsense reasoning over multiple possible
alternatives for single passages. Figure 1 shows an
example. Given a story text, we aggregate alter-
native endings and multiple-choice questions that
contain information such that they guide the deter-
mination of the most likely ending. By design, ma-
chines cannot rely only on answer options but also
have to understand the condition implied by each
question to answer correctly because all options
are expected to be possible. This dataset creation
procedure tackles the known issue of annotation
artifacts (Gururangan et al., 2018) in crowdsourced
datasets by using alternative endings, instead of
right and wrong endings, and by compiling the end-
ings and questions from multiple crowdworkers.

We evaluate strong pretrained language models
and heuristic methods on our dataset and observe
that in an unsupervised setting, even the strongest
model (DeBERTa large v3; He et al., 2021) under-
performs compared to humans by approximately
30% accuracy and more than 50% consistency
score (i.e., passage-wise accuracy). Our analysis
using input ablation and statistical significance tests
highlights that the annotation artifacts contained
in the answer options of our dataset questions are
much fewer than those in existing multiple-choice
datasets such as RACE (Lai et al., 2017) and Cos-
mosQA (Huang et al., 2019). Reasoning-type an-
notation shows that more than 60% of our dataset
questions require counterfactual reasoning, as well
as an understanding of characters’ motivations and
reactions, readers’ perceptions, and fictional infor-
mation.

Our contributions are summarized as follows:1

• We propose a situated commonsense reasoning
task and create a multiple-choice question an-
swering (QA) dataset using plausible story end-
ings, together with questions as multiple condi-

1The details of our data collection and final outcome in-
cluding all collected story endings are available at https:
//github.com/nii-cl/possible-stories.

tions where one of the endings becomes the most
plausible.

• We discover that current strong pretrained lan-
guage models struggle to solve our task when
training data are unavailable, indicating that
there is room for future improvement on situ-
ated commonsense reasoning.

• We show that our dataset contains minimal an-
notation artifacts in the answer options and has
many challenging questions that require counter-
factual reasoning and an understanding of char-
acters’ motivations and reactions, readers’ per-
ceptions, and fictional information.

2 Background and Related Works

Our work is motivated by recent efforts to create
evaluation frameworks for commonsense reasoning
situated in extra-linguistic contexts.

Benchmarks for Commonsense Reasoning
Many commonsense reasoning resources have
been proposed that target reading comprehension
(Huang et al., 2019), cloze tests regarding story
endings (Zellers et al., 2019) or in-between events
(Bhagavatula et al., 2020), and inferences on social
interactions (Sap et al., 2019). Mostafazadeh et al.
(2016) propose a task similar to ours, but it differs
in that ours has four possible ending options, rather
than a plausible and implausible completion pair.

Benchmarks for Counterfactual Reasoning
Researchers have coined the term counterfactual
reasoning to refer to the property of reasoning over
hypothetical events and have proposed benchmarks
to evaluate the counterfactual reasoning ability of
machines. Tandon et al. (2019) collect questions
that explicitly ask what if, based on procedural
texts. Qin et al. (2019) propose a task of generat-
ing a counterfactual story ending that is minimally
edited from the original ending, given modified
events in the context. Our data creation process is
similar in terms of using an existing story and mod-
ifying a segment; however, we ask crowdworkers
to change the segment more drastically, yielding
diverse story endings.

Evaluation of Understanding of Situations
Reasoning over multiple possibilities, depending
on the situation, can be regarded as situated reason-
ing. Recent studies have attempted to integrate sit-
uational information into the context used in down-
stream tasks, such as question answering on factual

https://github.com/nii-cl/possible-stories
https://github.com/nii-cl/possible-stories


3608

information (Zhang and Choi, 2021) and conse-
quence or normative action generation given real-
world social settings (Emelin et al., 2021). Story
Commonsense (Rashkin et al., 2018) provides an
annotated dataset of motivation and emotional reac-
tions. (Forbes et al., 2020) collect general rules of
thumb about actions. The range of situations that
we consider goes beyond facts and normative set-
tings, aiming to consider readers’ beliefs, causality,
and characters’ emotions.

Probing of Language Models The use of con-
trastive examples to probe language models’ knowl-
edge and inductive biases is an active area of re-
search. This line of research typically uses pairs
of sentences with minimum differences (Marvin
and Linzen, 2018; Li et al., 2020; Warstadt et al.,
2020), contrastive sets to identify the model’s deci-
sion boundary (Gardner et al., 2020), or adversarial
examples (Jia and Liang, 2017) to identify the seg-
ments that contribute to changing model behaviors.
By contrast, we use multiple plausible choices for
a single passage to study what causes models to
assign higher probabilities to certain choices.

3 Task Description

Motivation In Story Cloze Test, Mostafazadeh
et al. (2016) use right and wrong endings to evalu-
ate machines’ story understanding, assuming that
the right ending can be regarded as an entailing
hypothesis in a textual entailment framework and
the wrong ending as a contradicting hypothesis.
During data collection, the workers are instructed
to produce endings that are realistic and sensible
for right endings, and wrong endings are chosen
from those that are rated lower than right endings
in terms of meaningfulness and coherence. Con-
sequently, their task is created to have clear right
and wrong endings. However, in reality, there is an
infinite number of possibilities of clearly plausible
endings. By creating informative questions posit-
ing situations rather than questions asking about
relative plausibility without any conditions, we aim
to test machines’ story understanding in multiple
scenarios that provide additional information that
can discriminate one plausible ending from other
possible endings.

Task Formulation We formulate the task as a
multiple-choice question with a passage and an-
swer options, where the answer options depict pos-
sible endings of the passage. Given a story s, the

task is to determine the most plausible story ending
among the four possible endings E = (e1, . . . , e4)
under the condition c that is implied by a question.
To further evaluate the models’ understanding of
situations, we also define the task of predicting
the most plausible outcome for multiple conditions.
Given s, the task is to determine the most plausi-
ble story ending among E for each of the multiple
conditions C = (c1, . . . , c4) that are implied by
multiple questions. When the models capture all
the relationships between conditions and plausible
endings correctly, we assume that the models rea-
son over a finite number of possible consequences
and the relationships among them. We call this con-
sistency, which reports the percentage of a model’s
outputs that are correct for all questions referring
to a unique context. This evaluation is inspired by
the study of contrastive sets (Gardner et al., 2020).

4 The Possible Stories Dataset

Context Passages To collect story texts, we use
ROCStories (Mostafazadeh et al., 2016), a corpus
of five-sentence stories. The first to fourth sen-
tences describe the context, and the final sentence,
the ending, concludes the story. We choose ROC-
Stories because each of its stories has a clear be-
ginning and ending, while being generic enough to
come up with different endings. The details on our
story selection criteria are provided in Appendix A.

The following tasks are carried out by the crowd-
workers in Amazon Mechanical Turk (MTurk) who
perform above certain levels during our worker re-
cruitment phase, which is designed to be fairer than
the conventional qualifications used in MTurk. The
details of the worker recruitment are provided in
Appendix B. The instructions and task interface
presented to the workers are also provided in Ap-
pendix I.

4.1 Writing Tasks
Ending Writing We first ask workers to create
two alternative endings given a story with the orig-
inal ending. The participants are encouraged to be
as creative as possible so that possible yet unreal-
istic story endings can also be elicited. We collect
six to eight alternative endings by asking three or
four workers to produce two endings per passage.

Selection of Ending Options Having collected
six to eight alternative endings, we need to decide
which three options to use in our questions, in ad-
dition to the original ending.
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Depending on how they are chosen, there may be
differences in the difficulty of the generated ques-
tions. For example, if the endings are similar to
each other, it will be difficult to create questions
that have only one correct choice among four end-
ings. Conversely, if the endings are completely
different, the questions may be easier to create, but
machines may rely solely on semantic similarity
between passage and endings, without requiring
commonsense reasoning.

To examine the relationship between question
difficulty and the diversity of the chosen endings,
we run a pilot task using ten randomly selected sto-
ries with six different sets of endings. The six sets
are chosen based on the sum of cosine similarity
calculated based on the embeddings (Reimers and
Gurevych, 2019) of all the possible combinations
of endings, ranging from the set of endings that are
most similar to the most diverse set. Six sets are
chosen such that the distance between the values
of the sum of the cosine similarities of one set and
another set is equal. Through a validation step to
identify which sets of endings enable high-quality
multiple-choice questions, we decide on the set that
contains the second most diverse endings among
the six sets upon consideration.

Question Writing As four distinct endings are
gathered per passage, we ask the workers to write
questions in which only one of the four endings is
the correct answer. Because this task is more com-
plex, we select participants via a qualification task,
targeting those participants who maintain quality
in the ending writing task. It is up to the work-
ers to decide the correct option, considering the
difference in difficulty in writing questions with
certain story endings. Four questions are written
per passage by two workers, two per worker, and
the answers to each set of two questions are differ-
ent to maintain the diversity of the correct answers.
To ensure that the distribution of the dataset is natu-
ral (Bowman and Dahl, 2021; Kaushik et al., 2021)
and that the questions fit the general purpose, we
avoid collecting questions in an adversarial manner
(Bartolo et al., 2020).

4.2 Data Validation

The goal of the validation task is to verify that there
is one correct answer for each question, and that
the questions do not contain any objectionable or
personal content. Questions that do not meet these
criteria are discarded. The detailed validation re-

sults and further quality control over the collection
batches are reported in Appendix C.

Question-Answer Validation In this step, we
ask workers to answer multiple-choice questions.
The workers choose one of the four endings and
four additional options (no answer, more than two
possible answers, ill-formed questions, and others).
Each question is validated by three workers, and
we retain questions in which the majority vote is
identical to the writer’s answer.

Content Validation During the validation task,
we ask workers to indicate negative stereotypes or
biased descriptions of certain social groups. We
discard questions that the workers claim contain un-
fair descriptions. This process prevents the perpet-
uation of unethical opinions in downstream tasks
when this dataset is used for training models. Some
of the workers’ inputs are discussed in Ethical Con-
siderations. We incentivize workers with a bonus
of $0.3 per completion of the free-text form.

4.3 Dataset Statistics
Our dataset, Possible Stories, has 8,885 alterna-
tive endings for 1,313 passages and 4,533 multiple-
choice questions with the original ending and three
alternative endings as answer options. Table 1
presents the basic statistics for the resulting dataset.
Although the passages are shorter than those in
CosmosQA (70.3) and RACE (321.9), the ques-
tions (14.2) and answer options (15.3) are quite
longer than others (CosmosQA is 10.6 and 8.1 and
RACE is 10.0 and 5.3), which could potentially
make questions difficult (Nangia et al., 2021).

In addition, as shown in Table 2, more than 50%
of the contexts have questions with three or four
distinct correct answer choices. This contributes to
the assessment of the models’ comprehension of
multiple situations using the consistency metric.

One of our main goals for constructing a bench-
mark is to test the models’ capacity for situated
commonsense reasoning over multiple scenarios
as an unseen task. Nonetheless, to ensure that it
is feasible to model our task using current strong
pretrained language models (Liu et al., 2019a), we
follow a standard approach to split the collected
examples into training (75%), dev (10%), and test
(15%) sets. To investigate the model generaliz-
ability, the passages do not overlap between each
set. The dev and test sets do not contain questions
produced by workers who have received negative
comments from other workers to ensure quality.
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Split #Question #Passage #Q/P Passage len Question len Option len

Train 3,404 984 3.46 46.1 13.9 15.4
Dev 458 133 3.44 46.2 14.9 15.3
Test 671 196 3.42 47.0 15.0 15.2

Total 4,533 1,313 3.45 46.3 14.2 15.3

Table 1: Statistics of Possible Stories. Q and P indicate question and passage. #Q/P indicates the average number of
questions per passage. Len indicates the average number of tokens.

Distinct # of answers

#Q/P 1 2 3 4 total

1 2.1 2.1
2 1.5 8.4 9.9
3 16.8 12.0 28.8
4 18.1 34.7 6.5 59.3

Total 3.6 43.3 46.7 6.5 100.0

Table 2: Distribution (%) of the number of questions
per passage and the distinct number of correct answers.

5 Experiments

5.1 Models and Settings
For modern pretrained language models, we use
BERT (base and large; Devlin et al., 2019),
RoBERTa (base and large; Liu et al., 2019b), and
DeBERTa (base and large of v3; He et al., 2021).
In our standard setting (i.e., unsupervised), to adapt
these models to the multiple-choice task, we fine-
tune them on the RACE dataset (Lai et al., 2017),
which is a large-scale dataset of middle- and high-
school English exams and has passages and ques-
tions on various topics.2 In the supervised setting,
the models are directly trained on our training set
unless mentioned otherwise. To establish different
baseline methods, we consider simple heuristics us-
ing perplexity, semantic similarity, and entailment
scores. For perplexity heuristics, we use GPT-2
(Radford et al., 2019) and GPT-Neo (Black et al.,
2021) to obtain the perplexity of the inputs and
consider options with the smallest perplexity as a
model’s prediction. Sentence similarity uses repre-
sentations obtained from the sentence transformers
(Reimers and Gurevych, 2019) to compute the co-
sine similarity between the options and the rest of
the input. The candidate with the highest similarity
score is regarded as the model prediction. The en-

2We observe that models fine-tuned on CosmosQA are con-
sistently inferior to those fine-tuned on RACE (Appendix D).

tailment score is calculated using RoBERTa-large
fine-tuned on MNLI (Williams et al., 2018), and
the option with the highest entailment score when
taking the inputs as the premise is chosen.

5.2 Results

Human Performance To measure the human
performance on our test set, we collect three addi-
tional labels for all questions from different crowd-
workers who do not join the validation task. We
ensure that the same set of three workers answer
the questions belonging to a single story. For com-
puting accuracy, we take the majority of the three
labels to determine whether it is equal to the vali-
dated gold label. For computing consistency, we
determine whether the majority vote answers are
correct for all questions in each passage (Table 3).

Model Performance When the training set is un-
available, we observe that DeBERTa-large achieves
the best performance. Although this model is fine-
tuned on RACE, which has a sufficient number of
diverse training examples, the model performance
is far from that of humans, showing large gaps of
29.5% and 53.0% in terms of accuracy and consis-
tency, respectively. Out of the four simple heuris-
tics models, those using perplexity and semantic
similarity perform above the chance rate of 25%,
indicating that those features, while inadequate,
might be useful in finding the correct answers. By
contrast, the entailment score-based model falls
short of 25%. This result highlights the uniqueness
of our dataset, as it shows that relying on mono-
tonic reasoning cannot lead to a correct answer.

Supervised Performance With the training data,
we observe that DeBERTa-large performs better
than the other models, and it achieves the best accu-
racy and consistency when fine-tuned using RACE
(Table 3). These scores are very close to those of
humans, which implies that the task can be feasibly
performed by a strong model, given sufficient train-
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FT Model Acc. Consist.

7

DeBERTa-large∗ 60.2 19.9
DeBERTa-base∗ 45.3 8.2
RoBERTa-large∗ 50.5 13.8
PPL. GPT-2 large 30.4 2.0
PPL. GPT-Neo 2.7B 29.5 2.6
Semantic Sim. 37.3 4.1
Entailment 23.1 2.0

4

DeBERTa-large∗ 92.1 74.7
DeBERTa-large 88.5 67.3
DeBERTa-base 81.5 51.5
RoBERTa-large∗ 83.5 55.6
RoBERTa-large 81.7 49.5
RoBERTa-base 72.0 30.6
BERT-large 62.6 20.4
BERT-base 57.3 16.3

Human 92.5 76.5

Table 3: Model and human performances on our dataset.
Acc. and consist. denote accuracy (%) and consistency
(%). (∗) indicates that the model is fine-tuned on RACE.
FT indicates whether the models are fine-tuned on the
training set. The experimental details are reported in
Appendix E.

ing data. Nonetheless, it is notable that BERT-large
and RoBERTa-large, which were state-of-the-art
models only several years ago, show potential for
improvement (≈ 30% and 10% accuracy, respec-
tively) compared to humans.

Input Ablation Table 4 presents the input ab-
lation analysis. When ablating the passages, we
observe that pretrained language models fine-tuned
on any multiple-choice dataset show lower perfor-
mance than those with the full input. Regarding
the heuristics methods, we find that having the con-
text does not significantly change the ranking of
the endings. When ablating the questions, we ob-
serve that the performance of all models decreases,
which is expected because the same set of answer
options has multiple questions in our dataset.

6 Analysis

6.1 Human–model Performance Gap

To investigate the relative difficulty of our dataset
among multiple-choice QA datasets, we compare
the accuracy gap between humans and models in
an unsupervised setting with existing datasets, in-
cluding CosmosQA (Cosmos; we report the valida-

FT Model Full No pas. No ques.

7

DeBERTa-L∗ 60.2 58.1 21.8
RoBERTa-L∗ 50.5 50.3 21.5
GPT-2 large 30.4 35.2 26.4
Semantic Sim. 37.3 47.1 28.8

4

DeBERTa-L∗ 92.1 87.0 31.8
DeBERTa-L 88.5 86.4 33.4
BERT-L 62.6 51.1 30.4

Table 4: Input ablation results (accuracy; %). No
pas. and no ques. indicate that the context passage and
question are ablated from the input, respectively.

Model Ours Cosmos QuAIL MC-adv

DeBERTa-L 60.2 66.8 76.3 81.2
DeBERTa-B 45.3 56.0 66.2 69.0
RoBERTa-L 50.5 64.2 70.3 69.1

Human 92.5 94.0 100.0 92.0
Acc. gap 40.5 31.7 29.1 18.9

Table 5: Human performance, model performance with-
out fine-tuning (accuracy; %), and the gap between the
human performance and the average model performance
(larger values imply higher difficulty). Model-L and -B
indicate the large and base models respectively.

tion result because the test labels are not available),
QuAIL (Rogers et al., 2020, challenge set), and
the examples provided by Sugawara et al. (2022)
(MC-adv; multiple-choice questions that are writ-
ten by crowdworkers in an adversarial manner).
We use three models (DeBERTa-large and -base
and RoBERTa-large) fine-tuned on RACE. The re-
sults in Table 5 demonstrate that our dataset may
be more challenging than the multiple-choice read-
ing comprehension datasets we analyze, despite the
simplicity of our data collection method.

6.2 Annotation Artifacts in Answer Options

One of our motivations for crowdsourcing multi-
ple questions for the same set of answer options
is to minimize superficial patterns (i.e., annotation
artifacts) in the collected examples, especially in
their answer options. To validate this, we first
compare the supervised performance in three ab-
lation settings (no context passage, no question,
and answer options only). We use DeBERTa-large
and report the test score on our dataset, RACE,
QuAIL, and CosmosQA. Table 6 shows that al-
though the no-context performance on our dataset
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Figure 2: Token-level annotation artifacts in the training examples of our dataset, RACE, QuAIL, and CosmosQA.
All tokens are below α = 0.01 with a conservative Bonferroni correction for 3,990, 15,472, 35,762, and 9,688
vocabulary items, respectively.

Dataset Full No pas. No ques. Opt. only

Ours 88.5 86.4 33.4 29.1
RACE 87.9 60.1 69.8 46.6
QuAIL 81.7 51.8 58.3 39.6
Cosmos 87.8 72.5 59.4 57.2

Table 6: Supervised accuracy (%) by DeBERTa-large
(v3) on the input-ablation settings.

is relatively high, the no-question and option-only
performances are lower than the others. This result
implies that the question and answer options in our
dataset are mutually indispensable for predicting
the correct answer, while in the other datasets, the
options on their own and their relationship with the
context are informative for the prediction.

To visualize the actual tokens that create annota-
tion artifacts, we follow Gardner et al. (2021), who
propose analyzing token-level features in terms of
the empirical probability of labels p̂(y|xi) given a
specific token (vocabulary item) xi appearing in
input X . Here, the label y indicates whether an

answer option is the correct (True) or not (False).
We plot the probability p̂(y|xi) and the number
of occurrences (n) for the tokens of the training
questions in our dataset, RACE, QuAIL, and Cos-
mosQA (Figures 2) for comparison. To see if the
null-hypothesis (i.e., the token does not co-occur
with a specific label) is accepted or rejected, we
compute z-statistics and plot the level of statistical
significance α = 0.01 and its conservative Bonfer-
roni correction (Bonferroni, 1936) for the vocab-
ulary items (α = 0.01/|V |). We find that for the
true label in our dataset, only 12 tokens are above
α = 0.01 and no tokens are above α = 0.01/|V |
where several content words, such as admit, fine,
and great are possibly helpful for predicting the
correct label. By contrast, 421 and 84 tokens in
CosmosQA are found to be statistically significant
at the respective levels, where many content words,
such as enjoy and life, function words, such as
or, and the task-specific phrase (none of the above
choice) are strong indicators. We observe similar
trends for RACE and QuAIL. In Appendix F, we
report the numbers of vocabulary items above the
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Figure 3: Question words and the subsequent words of
the questions in our dataset.
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Figure 4: Reasoning types across our dataset, Cos-
mosQA, and RACE.

levels of statistical significance for the four datasets.
These results show that the answer options in our
dataset contain minimal annotation artifacts com-
pared to those of the other datasets.

6.3 Question and Reasoning Types

The question words and subsequent words in the
test questions are plotted in Figure 3. We find that
more than half the number of questions are what
questions, seemingly asking about the concrete con-
tent of the story. We also observe subsequent words,
such as would, outcome, and if, which lead to a
statement requiring commonsense reasoning.

To investigate the kind of reasoning required
for answering, we annotate the collected questions
with reasoning types. Considering previous studies,
we define nine reasoning types (See Appendices G
and H for the definitions and examples). We an-
notate 70 questions from our test set and the same
number of questions taken from CosmosQA and
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Figure 5: Reasoning types of easy and hard questions
in our dataset.

RACE for comparison (Figure 4). In addition, to
examine the relationship between question diffi-
culty and reasoning types, we split the test exam-
ples into easy and hard subsets and annotate 30
questions for each subset (Figure 5). The easy
questions are those for which the human–model ac-
curacy gap is 0% in terms of accuracy, and the hard
ones are those for which the gap is larger than 60%
(215 and 64 examples). To compute model perfor-
mance, we average the accuracy of the five models
(BERT-base and large, RoBERTa-base and large,
and RoBERTa-large, which is fine-tuned on RACE;
all models are fine-tuned on our training set). Apart
from the reasoning types, we independently check
whether each question requires counterfactual rea-
soning. This includes not only the condition and
fiction types but also other types such as tempo-
ral reasoning in the sense that it can be involved
in reasoning over counterfactual conditions. The
frequency (%) of such questions is as follows: ours
68.6, ours-hard 76.7, ours-easy 66.7, CosmosQA
4.3, and RACE 2.9.

In summary, our major findings are as follows:

• Our dataset includes more questions regarding
conditions and characters’ motivations and reac-
tions than the other datasets. It also has a small
number of fictional and perception questions,
while the others do not.

• We do not observe abstraction and factoid ques-
tions in the annotated examples. However, we
find several abstraction questions in our test set,
one of which is presented in Appendix H.

• Questions regarding characters’ motivations and
reactions are relatively harder, while questions
regarding causality, which do not require coun-
terfactual reasoning in most cases in our annota-
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P: The Smith family loved to go on day trips on their boat in the summer. One day, they decided it would be fun to take the
kids to a new place. They chose to travel north to a beach that wasn’t terribly far away. The children had a wonderful time and
met a new friend to play with.

Q1: Which of these is the most negative ending? Q2: Which of these implies that the trip they took was successful?
Q3: Which ending implies the Smith kids were bad at staying in touch? Q4: Which ending involves the most conflict?

Q1 Q2 Q3 Q4 Options
� 7� � � A: They kept in touch with their friend even after they went home.
4� � � 4� B: At the end of the day the kids got into a fight with each other and were happy to leave.
� 4� � � C: The Smith’s decided they’d visit a new beach every year, and they made tons of new friends.
7� � 4� 7� D: They went home though and the kids never saw their friend again.

Figure 6: Example of questions with a single passage. Check mark (4) indicates the correct option. Cross mark (7)
indicates that DeBERTa-large (v3) makes an incorrect prediction with that option.

tion, are easier. This corresponds with the fact
that we find more counterfactual questions in the
hard questions than in the easy questions.

6.4 Case Study

We present examples in which the strongest model
(DeBERTa-large) makes incorrect predictions (Fig-
ure 6). A single worker writes Q1 and Q2 and
another worker writes Q3 and Q4. Q1 and Q4 are
annotated as perceptions (the most negative end-
ing and the most conflict). It seems that the model
struggles to compare which option is more negative
between options B (got into a fight...were happy)
and D (never saw their friend). Q2 and Q3 are an-
notated as implications ( imply...). For Q2, we must
infer that option C (e.g., made tons of new friends)
implies success, but option B (kept in touch with
their friend) might sound more successful to the
model. More examples of other reasoning types
are provided in Appendix H.

7 Discussion

Circumscribing commonsense reasoning from sim-
ple heuristics has been a long-standing problem in
the field of artificial intelligence (Levesque, 2014).
Although the answer options in our dataset are free
from annotation artifacts, our ablation analysis in
Section 5 also shows that the questions and an-
swer options may still involve some clues that the
models can exploit. Further research is needed
to explain how commonsense reasoning is distin-
guished from a set of simple heuristics in machines’
situational understanding.

In the question-writing task, one of the workers
addresses the difficulty of creating questions that
cannot be answered without reading the passages
and that it is even practically impossible unless ask-
ing the questions to small children. This illustrates

that humans may also use a small amount of in-
formation available to draw inferences. This issue
arises possibly because of our task formulation, an-
swering which option is more plausible than the
others. It can be argued that modifying this task to
a generative task (Chen et al., 2020a) is one way to
directly assess machines’ commonsense reasoning
ability, but it should be noted that this would en-
tail some difficulties in the evaluation of generated
answers.

In addition, exploring what kind of conditions
narrow down the possibilities of consequences is
important to effectively evaluate machines’ situ-
ational understanding. Although several studies
have captured the dynamics of conditions in moral
and immoral settings (Emelin et al., 2021), many
other factors come into play in decision-making in
our daily lives, such as feelings, personal beliefs,
expectations from others, or even unconscious bi-
ases.

8 Conclusion

This paper proposes a new dataset, Possible Sto-
ries, consisting of 4.5K crowdsourced questions
with 1.3K story passages to investigate whether ma-
chines can infer the most plausible ending among
four possible endings under certain situations pos-
tulated by questions. We discover that current
strong pretrained language models struggle to an-
swer questions consistently, showing a large accu-
racy gap compared with humans. A comparison
with existing multiple-choice datasets demonstrates
that our questions contain minimal annotation ar-
tifacts in the answer options and require counter-
factual reasoning as well as an understanding of
characters’ motivations and emotions, suggesting
that our dataset can serve as a challenging bench-
mark for future commonsense reasoning studies.
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Ethical Considerations

This study aims to facilitate the scientific study of
machines’ situated commonsense reasoning. We
use crowdsourcing for our data collection, taking
care to avoid the exploitation of workers and pay
well above the U.S. federal minimum wage. The
details of worker recruitment and the payment pro-
cess are described in Appendix B. We also validate
that the examples in our dataset do not contain un-
fair or harmful content. In this section, we report
our observations regarding the validation task. This
study is approved by our internal review board.

Content Validation for Fair Representation
During content validation (Section 4.2), we find
that the level of content to be flagged is not trivial.
There is a question containing the phrase main-
stream COVID-related propaganda, and one of the
workers told us that the worker was unsure if it
should be flagged. Another case involves a story
ending that describes the cooking skills of a male
character in a bad light. Does this representation
perpetuate the negative stereotype that men are bad
at cooking? To investigate this, we should dive
deeper into the semantic plausibility learned in lan-
guage models (Porada et al., 2021; Pedinotti et al.,
2021). Unless the focus is on the domain of natural
science, there is less agreement on what would lean
in spreading desirable and undesirable content, and
the borderline can change across time and place. It
should also be noted that the degree of sensitivity
towards underspecified biases depends on individ-
uals’ imagination and empathy. Future work can
examine how to effectively moderate the dataset
for fair and unbiased representation.

Limitations One of the limitations of the study
is “limited diversity.” We observe that some sys-
temic biases during data collection. One example
concerns a story in which the protagonist missed
breakfast on a day of work. Many crowdwork-
ers come up with the possibility of the girlfriend
bringing the lunch to the protagonist’s workplace
(referred to as I throughout the context), but no
one assumes that the boyfriend will do the same.
These types of unconscious biases can accumulate
in datasets. In addition, our dataset is limited to
English.
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Ending Ques. Valid.

# of crowdworkers 163 66 65
Ave. # of examples 54.6 79.9 243.3
Max. # of examples 132 170 400

Table 7: Statistics of crowdworkers that participate in
each task, the average and maximum number of gener-
ated examples per crowdworker.

We adapt this qualification following the recom-
mendation of Kummerfeld (2021) to avoid the ex-
ploitation of crowdworkers. He demonstrates that
imposing these prepared criteria is not fair because
crowdworkers need to work on poorly paid tasks to
achieve those qualifications in most cases.

We pay $1.0 USD for an ending writing task,
$1.5 for a question writing task, and $1.0 for a
validation task, estimating the completion time to
be less than 5, 7.5, and 5 mins respectively. This
adds to more than $12, which is well above the U.S.
federal minimum wage. We do not calculate the
wage according to the cost of living in each country
where the workers reside, as we do not ask them
where they live.

C Validation Results and Quality Control

Validation Results During the question-answer
validation, 13.8% of the collected questions are
discarded. Out of the four additional options, ques-
tions with no answer account for 1.8%, those with
more than two possible answers account for 6.8%,
ill-formed questions account for 1.8%, and others
account for 2.1% of the total. The high frequency
of questions with more than two options is under-
stood to be due to the possibility that some answer
options are too similar to each other to create ques-
tions with a single correct answer. Through the
content validation process, 0.2% of the questions
are discarded.

Quality Control During the data collection pro-
cess, we repeat all tasks three times (i.e., three
batches). The first and second batches have no
workers in common, resulting in 52% of the fi-
nal dataset with a total of 66 workers. For the
final batch, we further qualify the workers who par-
ticipated in these batches using three criteria: 1)
writing more than nine questions, 2) mean human
validation accuracy of more than 66%, and 3) cre-
ating more than 90% of questions aswh-questions
to ensure dataset quality. Additionally, we manu-

Model RACE CosmosQA

DeBERTa-large† 92.1 89.7
DeBERTa-large 88.5 51.3
RoBERTa-large† 83.5 83.3
RoBERTa-large 50.5 38.3

Table 8: Accuracy (%) of models on our test set that
are fine-tuned on RACE and CosmosQA respectively.
† indicates that the model is trained on our training set
(i.e., supervised).

Model b lr

DeBERTa-large 24 1e-5
DeBERTa-base 48 3e-5
RoBERTa-large 24 1e-5
RoBERTa-base 48 3e-5
BERT-large 36 1e-5
BERT-base 72 3e-5

Table 9: Hyperparameters used in the experiments. b
and lr indicate the batch size and learning rate, respec-
tively.

ally check the comments given to each worker and
exclude workers who tend to produce yes/no ques-
tions and those containing unethical or politically
sensitive topics. The final batch yields 48% of the
final dataset with 38 workers.

D Comparison of Models Fine-tuned on
RACE and CosmosQA

In our experiments, we use RACE for fine-tuning
our pretrained language models to adapt them to
the multiple-choice task. This is because we ob-
serve that RoBERTa-large and DeBERTa-large fine-
tuned on RACE show higher performance than the
corresponding models fine-tuned on CosmosQA
(Table 8) in both unsupervised and supervised set-
tings.

E Details of Experiments

Table 9 reports the hyperparameters used in our
experiments. We use Huggingface’s Transformers
library (Wolf et al., 2020) for our experiments.

Table 10 reports the detailed results of DeBERTa-
large (fine-tuned on RACE) on our test set in the
unsupervised and supervised settings. Owing to
computational constraints, we conduct five differ-
ent runs only for this model, which is the strongest
among the models we use in our experiments. We
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FT Model Full input No passage No question
Accuracy Consist. Accuracy Consist. Accuracy Consist.

7 DeBERTa-large∗ 60.2±1.7 19.9±2.2 58.1±2.6 19.9±1.7 21.8±1.6 0.5±0.4
4 DeBERTa-large∗ 92.1±0.6 74.7±2.3 87.0±0.7 62.1±1.8 31.8±1.6 1.9±0.7

Table 10: Unsupervised and supervised performance (%) with the standard deviations of DeBERTa-large in five
runs. The five models are fine-tuned on RACE with different random seeds, respectively.

α Ours Cosmos RACE QuAIL

0.01 12/5 421/33 475/163 173/7
0.01/|V | 0/0 84/6 104/19 39/3

|V | 3,990 15,472 35,762 9,688

Table 11: The number of vocabulary items that appear
in correct/incorrect options above the levels of statistical
significance (α = 0.01 and its conservative Bonferroni
correction for the size of vocabulary |V |).

do not observe large deviations across the runs.

F Annotation Artifacts in Answer
Options

We report the number of examples above different
levels of statistical significance across the four an-
alyzed datasets in Table 11. The number for our
dataset above α = 0.01/|V | is zero, whereas those
for the other datasets are significantly larger. This
result shows that our dataset does not suffer from
token-level annotation artifacts in the answer op-
tions, supporting our findings on the option-only
training results in Section 6.1.

G Definitions of Reasoning Types

Annotating reasoning types is not a trivial task, par-
ticularly because the questions are fully written by
humans without templates. Moreover, it is possi-
ble to use many classification methods, and there is
rarely a consensus on reasoning types. For example,
CosmosQA proposes seven reasoning types: pre-
/post-conditions, motivations, reactions, temporal
events, situational facts, counterfactuals, and other
(e.g., cultural norms). In QuAIL, nine types of rea-
soning are proposed spanning three categories: tem-
poral, factoid, character properties for text-based
questions, coreference, causality, belief states, sub-
sequent entity states, event durations for questions
that require world knowledge, and unanswerable.
After categorizing these into five types, we add
three types: abstraction (summarizing what hap-

1. Condition: pre/post counterfactual conditions in-
troduced in the question.

2. Causality: causes and effects of events.
3. Temporal: temporal relations between events.
4. Character: characters’ emotions, motivations,

and reactions.
5. Factoid: extracting entities from the context.
6. Abstraction: lesson, conclusion, and summary of

the context.
7. Implication: paraphrasing and implication about

events.
8. Perception: reader’s perceptual responses.
9. Fictional: fictional situations as counterfactual

condition.

Table 12: Definitions of reasoning types.

pened), implication (paraphrasing), and readers’
(observers’) perceptions. In addition, we differ-
entiate reasoning over fiction from counterfactual
in that it is a more specific type of counterfactual
that is considered implausible for most people in
the real world. This results in the nine reasoning
types listed in Table 12. Appendix H presents some
examples.

H More Examples for Reasoning Types
and Difficulty

The reasoning types and their example questions
taken from our dataset are listed in Table 13. We
also show examples of passage, question, and an-
swer options in our dataset, including easy and hard
questions, in Figure 7. Each question ends with
its reasoning type and easy/hard classification, if
available.

I Annotation Instructions and Interfaces

I.1 Ending Writing

Figures 8 and 9 show the instructions used in the
story ending writing task. Figure 10 shows the
interface used in the story ending writing task.
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Reasoning Example

Condition Jeff is a child with a very vivid
sense of imagination. What is most
likely to have happened next?

Causality Which is the most likely caused the
guests to avoid shards of glass?

Temporal Which is most likely if Chris later
felt sick to his stomach?

Character What outcome would be most up-
setting to Ben?

Factoid Where did people hide the money
they got?

Abstraction What lesson did she learn from the
passage?

Implication Which answer implies Bob was
pleased with his performance?

Perception What is the most moral decision for
Danielle?

Fictional How does Dylan get home?

Table 13: Reasoning types we use in the annotation and
their example questions.

I.2 Question Writing
Figures 11, 12, and 13 show the instructions used in
the question writing task. Figures 14 and 15 show
the interface used in the question writing task.

I.3 Question Validation
Figure 16 shows the instructions used in the ques-
tion validation task.
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P1: Lydia was listening to an old CD her boyfriend had burned for her. Her CD player was old but still working
alright. She had lost track of her thoughts and was enjoying the music. Suddenly, the CD skipped out and stopped
playing.

Q1: Why was the CD player unable to function? (causality, easy)
Q2: Which answer indicates that Lydia would never be able to listen to the CD again? (implication, hard)
Q3: Which of the following is likely to occur if we know Lydia has realized the CD player cannot be fixed?

(condition, hard)
Q1 Q2 Q3 Options
� 4� � A: Lydia tried to fix it but the CD had a huge scratch.
� � � B: Lydia tinkered with the CD player and got it working again.
� � 4� C: Lydia went to bed upset, knowing she had to buy a new one in the morning.
4� 7� 7� D: She realized the batteries in her CD player had died.

P2: Darrel was waiting in the drive through for half an hour. He had about lost his patience. When he finally got
to the window he was about to scream at them. They immediately apologized before he could.

Q1: How did the employees react when they saw Darrel’s face turn red at the drive-through window? (character)
Q2: How did Darrel respond after the employees apologized for the long wait? (character, easy)
Q3: If Darrel’s mind was soon preoccupied with something entirely different, what was most likely to have

happened? (condition, easy)
Q4: In this scenario, what most likely happened if Darrel was pleased soon thereafter? (character, hard)
Q1 Q2 Q3 Q4 Options
� � � 4� A: They had an accident and offered free food to make it up to him.
� 4� � � B: He chose not to accept the apology and asked to speak to the manager.
4� � � 7� C: They quickly gave him his food and informed him that there were very few employees

working that day.
� � 4� � D: Before he could open his mouth, his engine started smoking and he had to call a tow

truck.

P3: Jan checked to make sure no one was around. Her two older brothers had been sneaking around the garden
lately. Being a curious child, Jan wanted to know what they were up to. She carefully opened the door to her
brother’s room.

Q1: If Jan smelled pleasant aromas and felt fresh air in the room, what did she likely discover? (condition)
Q2: What was the likely outcome if Jan was left still feeling clueless about what her brothers had been up to?

(character)
Q3: Which outcome is the most unlikely to occur in reality? (fiction)
Q4: Which would be particularly unpleasant for Jan if she suffers from acute arachnophobia? (character)
Q1 Q2 Q3 Q4 Options
� � � 4� A: Inside the back of their closet, she found several jars with spiders.
� � 4� � B: There was a strange looking alien peeking out of a corner with fearful eyes.
4� 7� � � C: They had taken plants from the garden and moved them to their room.
� 4� � � D: The door slammed shut on her face as the cameras alerted the brothers of an intruder.

P4: Billy liked Christmas songs. But didn’t know what a turtle dove was. He like turtle and knew they were green
and had a shell. He also knew what a dove was, a type of bird.

Q1: What happened if it was the worst Christmas of Billy’s life? (condition, easy)
Q2: What happened if he pictured a turtle with wings? (fictional, easy)
Q3: What outcome would be most tragic? (perception)
Q1 Q2 Q3 Options
� � � A: So he decided that 12 drummers drumming was a better part of the song.
� 4� � B: He decided that a turtle dove was likely a flying turtle.
� � � C: Billy became a famous author after embracing his love for holiday traditions.
4� � 4� D: He went to ask his mother about turtle doves, but when he found her in the bathtub, she

was dead.

Figure 7: Examples in our dataset. Check mark (4) indicates the correct option. Cross mark (7) indicates that
RoBERTa-large fine-tuned on RACE and our training set makes an incorrect prediction with that option.
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Figure 8: Instructions (1/2) used in the story ending writing task.
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Figure 9: Instructions (2/2) used in the story ending writing task.
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Figure 10: Interface used in the story ending writing task.
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Figure 11: Instructions (1/3) used in the question writing task.
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Figure 12: Instructions (2/3) used in the question writing task.
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Figure 13: Instructions (3/3) used in the question writing task.
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Figure 14: Interface (1/2) used in the question writing task.
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Figure 15: Interface (2/2) used in the question writing task.

Figure 16: Instructions used in the question validation task.


