
Proceedings of the 29th International Conference on Computational Linguistics, pages 441–450
October 12–17, 2022.

441

DialAug: Mixing up Dialogue Contexts in Contrastive Learning for Robust
Conversational Modeling

Lahari Poddar Peiyao Wang
Amazon

{poddarl, peiyaow, reinspac}@amazon.com

Julia Reinspach

Abstract

Retrieval-based conversational systems learn to
rank response candidates for a given dialogue
context by computing the similarity between
their vector representations. However, train-
ing on a single textual form of the multi-turn
context limits the ability of a model to learn
representations that generalize to natural per-
turbations seen during inference. In this pa-
per we propose a framework that incorporates
augmented versions of a dialogue context into
the learning objective. We utilize contrastive
learning as an auxiliary objective to learn ro-
bust dialogue context representations that are
invariant to perturbations injected through the
augmentation method. We experiment with
four benchmark dialogue datasets and demon-
strate that our framework combines well with
existing augmentation methods and can signifi-
cantly improve over baseline BERT-based rank-
ing architectures. Furthermore, we propose a
novel data augmentation method, ConMix, that
adds token level perturbations through stochas-
tic mixing of tokens from other contexts in the
batch. We show that our proposed augmen-
tation method outperforms previous data aug-
mentation approaches, and provides dialogue
representations that are more robust to common
perturbations seen during inference.

1 Introduction

Conversational systems have gained immense re-
search attention in the past few years due to their
practical applications in building intelligent digital
assistants. In order to converse with humans in nat-
ural language, a conversational system needs to pro-
duce meaningful and contextual responses at every
turn of a dialogue. This is often accomplished by
a ranking model, the goal of which is to select the
most appropriate response among a set of curated
candidate responses (Lu et al., 2019; Mehri et al.,
2019; Henderson et al., 2019; Xu et al., 2021; Gu
et al., 2020; Whang et al., 2020; Han et al., 2021).

For practical applications a Bi-encoder model ar-
chitecture is often adopted, due to its computa-
tional efficiency (Humeau et al., 2019; Reimers
and Gurevych, 2019; Wu et al., 2020a; Hender-
son et al., 2019). In this approach, the dialogue
context and candidate responses are encoded into
latent vectors separately, and the ranking scores are
computed based on the similarity between these
vectors.

Learning effective vector representations of di-
alogue contexts is a challenging task. Since most
dialogue datasets consist of free-text multi-turn in-
teractions between humans, the exact same context-
response pair is likely to be seen only once in the
whole training set. However, during inference, the
same response could be appropriate for various
different forms of contexts. For example, in the
customer service domain, a response such as “I can
issue a refund for the damaged item” could be ap-
propriate for many contexts that fall into the general
theme of a customer having received a damaged
item. Such contexts may differ from one another
due to variations in customer language, the particu-
lar item details, or the type of damage etc. Hence,
a response ranking model needs to learn represen-
tations that are robust to syntactic and fine-grained
semantic variations in the dialogue context.

In order to learn representations with improved
generalization capabilities, data augmentation has
become ubiquitous in computer vision (Shorten and
Khoshgoftaar, 2019). Recent research (Shen et al.,
2020; Feng et al., 2021; Longpre et al., 2020) has
also reported success in leveraging augmentations
for NLP tasks. An effective method of incorpo-
rating data augmentation for better representation
learning is through a contrastive learning frame-
work (Chen et al., 2020; Wu et al., 2020b; Gao
et al., 2021; Fang and Xie, 2020; Xie et al., 2020;
Fabbri et al., 2021; Wei et al., 2021), where the ob-
jective is to maximize similarity between encoded
representations of an input and its augmented ver-
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sion. While contrastive learning with data augmen-
tations has shown promising results in several NLP
tasks, to the best of our knowledge the potential of
such approaches for conversational modeling has
not yet been explored.

In this work we propose a multi-objective model
architecture, DialAug, for learning robust dialogue
response ranking. The proposed architecture lever-
ages the power of text data augmentations in com-
bination with contrastive learning. During train-
ing, the model learns to predict the same response
for both the original dialogue context and for its
augmented version, thus making it agnostic to vari-
ations in the context. To capture the notion of
coherence and semantic relevance of a dialogue,
we introduce an auxiliary contrastive objective that
learns the similarity between different views of a
dialogue context, in contrast to views of contexts
of other dialogues.

We further propose a novel data augmentation
method for Context Mixing, namely ConMix, that
adds token level perturbations to the dialogue con-
text. The aim of introducing the perturbations is
to simulate different variations of a multi-turn con-
text. ConMix stochastically replaces some of the
input tokens in a dialogue context with tokens from
another randomly sampled context in the training
batch. The benefits of this method are twofold.
First, we are creating a perturbed version of the
original context that will help learn generalizable
representations. Second, we are also generating
hard negatives for other responses and contexts in
the batch, due to the word overlap infused through
stochastic mixing from other context in the same
training batch. To summarize, in this paper we
make the following major contributions:

• We propose a multi-objective model architec-
ture, DialAug, for dialogue response ranking
that uses a ranking objective and a contrastive
learning objective. The proposed architecture
is modular and can be effectively combined
with many data augmentation techniques.

• We propose a novel data augmentation tech-
nique, ConMix, that stochastically adds token-
level perturbations to dialogue contexts during
training, leading to better performance and ro-
bustness of the learned model as compared to
baseline data augmentation methods.

• We conduct an extensive set of evaluations on
four large-scale publicly available dialogue

datasets, and demonstrate the proposed ap-
proach outperforms strong baselines and is
effective in learning robust representations.

2 Related work

We review two closely related research areas: data
augmentation techniques for text data, and con-
trastive learning.

Data Augmentation for Text : Data augmenta-
tion has been widely used for computer vision tasks,
in order to increase the size of a labeled dataset,
and to improve robustness of the model to input
noise. Typical image augmentations include crop-
ping, flipping, rotating, resizing, applying color
distortions, and Gaussian blurring (Shorten and
Khoshgoftaar, 2019; Chen et al., 2020). Equiva-
lent simple augmentation techniques have been pro-
posed and explored for text data tasks, e.g., word
deletions and permutations, and have been shown
to improve the model’s robustness and performance
(Shorten and Khoshgoftaar, 2019). There has also
been some active research into semantic augmen-
tation techniques, such as back-translation, syn-
onym replacement, or generative models (Shorten
and Khoshgoftaar, 2019; Wu et al., 2020b; Xie
et al., 2020; Kumar et al., 2019; Fang and Xie,
2020). However, these are comparatively complex
to implement, and rely on external knowledge (i.e.,
synonym lists) or additional models, making them
only suitable for tasks where appropriate models
or knowledge exists. In this work we only consider
automatic data augmentation techniques, i.e., tech-
niques that do not require external knowledge or
additional models, and can be easily implemented
for any language or task.

Contrastive Learning : Contrastive learning
has been shown to be a powerful representation
learning technique for both vision and text data
tasks (Chen et al., 2020; Khosla et al., 2020; Wu
et al., 2020b; Giorgi et al., 2020; Gunel et al., 2020).
It essentially aims to learn a better representation
of the input by maximizing agreement between
two similar data points. These data points can be
either augmented versions of the same input in self-
supervised learning (Chen et al., 2020; Giorgi et al.,
2020; Wu et al., 2020b), or from the same class
label in supervised learning (Gunel et al., 2020; Ma
et al., 2021; Khosla et al., 2020).

Contrastive learning has been explored for both
pretraining and finetuning tasks in NLP. For exam-
ple, (Wu et al., 2020b; Giorgi et al., 2020; Fang and
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Figure 1: DialAug model architecture. Context C and
Response R are the model inputs, and the output is a
similarity score. The augmented context C ′ and projec-
tion network are used only during training. The encoder
networks share weights, as well as the projection layers.

Xie, 2020) use contrastive learning to pretrain large-
scale transformer encoders for sentence representa-
tions, while other researchers focus on more task-
specific finetuning settings, such as summarization
(Fabbri et al., 2021), text classification (Wei et al.,
2021), textual similarity (Gao et al., 2021), and user
satisfaction prediction (Kachuee et al., 2021). Re-
cent work (Ma et al., 2021) has demonstrated suc-
cess in adopting contrastive finetuning for neural
rankers in the QA domain, however, the authors do
not leverage data augmentations. Our work is more
similar to CLEAR (Wu et al., 2020b) which uses
contrastive learning with text data augmentations
for pretraining language models. However, we fo-
cus on the finetuning stage of dialogue response
ranking and leverage augmentations for dialogue
contexts in the contrastive learning objective. We
use deletion and reordering based augmentations
proposed in their work as baselines for ConMix.

3 Approach

Consider a batch with B inputs
{Ci, Ri}i={1,2,··· ,B}, where Ci is a dialogue
context and Ri is the corresponding response.
Given the dialogue context Ci, objective of
the model is to predict the most likely re-
sponse Ri among a set of candidate responses
{R1, R2, · · ·Rm}.

3.1 DialAug Model Architecture

We build upon the widely used Bi-encoder model
architecture (Humeau et al., 2019; Reimers and
Gurevych, 2019; Wu et al., 2020a; Henderson et al.,
2019), which is efficient for real world use cases,

due to its fast training and inference speed. Figure
1 shows the proposed model architecture.

Our architecture consists of an augmentation
module that creates an additional view C ′i of the di-
alogue context Ci, through certain transformations
(described later). We first encode the context Ci,
the augmented context C ′i, and the response Ri to
latent vectors, using a shared encoder. We leverage
pre-trained language models and use BERT (De-
vlin et al., 2019) as the encoder block. The input
sequence to the BERT encoder is represented as

Ci = [CLS,w1 · · · , EOT,wj , · · · , wn−1, EOT ]
(1)

where n is the number of words in the context or
response, CLS is a special token marking the be-
ginning of the input sequence, and an additional
end-of-turn EOT token marks the end of turns in
the dialogue context. We feed these sequences to
the BERT encoder and obtain latent vector rep-
resentations for the input context, the augmented
context, and the response.

3.1.1 Main Task Loss
Dialogue contexts consist of multiple turns, with
a lot of information that might be redundant for
predicting the next response. We argue that such
lengthy contexts can usually accommodate small
word level variations without changing the overall
theme or topic of the conversation and the next
response. Therefore, we consider the augmented
version of a context C ′i to be label-invariant.

This allows the model to learn that Ri is the next
response for both the original context Ci and its
augmented version C ′i. Introducing these (C ′i, Ri)
pairs in the main task loss of response ranking es-
sentially doubles the number of training data points
seen by the model in each epoch. More importantly,
this forces the model to learn robust representations
of the lengthy dialogue contexts, in order to rank
the response Ri over other m candidate responses,
for two different views of it.

In order to obtain an aggregated vector represen-
tation of the sequences, we use the latent vector
representation of the CLS token. The score of a
candidate response Ri, for a context, is computed
using dot-product of their vector representations

score(Ci, Ri) = xCi
CLS · x

Ri
CLS (2)

score(C ′i, Ri) = x
C′

i
CLS · x

Ri
CLS (3)

where xCi
CLS , x

C′
i

CLS , x
Ri
CLS denote the representa-

tions from the CLS token of context, the aug-
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(a) Mixing context tokens in batch (b) Example of generated perturbed context through augmentation

Figure 2: Illustration of the ConMix data augmentation. C1 is a context and R1 is its corresponding response. C ′
1 is

an augmented version of C1, which retains most of the tokens from C1 (blue), and has few tokens replaced with
tokens from a random context C5 (orange). R1 is still considered the most appropriate response to C ′

1.

mented context and the response, respectively. We
optimize a cross-entropy loss (LCE) to achieve our
main goal of scoring the next response in the di-
alogue higher than a set of candidate responses.
During training, we consider the other responses in
a batch as negatives for a given context.

3.2 Contrastive Learning
We introduce a contrastive learning objective as an
auxiliary task during training. In particular, through
the contrastive learning objective, we learn simi-
larities between the vector representations of the
original context Ci and the augmented context C ′i.
In addition to Ci and C ′i, the response Ri is also a
part of the same dialogue, and hence we include
the response candidates into our contrastive loss.

Following (Chen et al., 2020), we apply a projec-
tion network g(·) to transform the representations
to a space where the contrastive loss will be applied.
We use a simple 2-layer feed-forward network with
ReLU non-linearity. The contrastive loss LCL is
optimized to maximize the similarity between span
representations of C, C ′ and R.

We adopt a generalized version of the NT-
Xent loss (Chen et al., 2020) that can ac-
cept multiple positives. For the ith train-
ing instance, the positive pairs are given by
{(zCi , zC′

i
), (zCi , zRi), (zC′

i
, zRi)}. For each such

positive pairs (pi, p+i ), the contrastive loss term is
represented as

`pi,p+i
= −log

exp(zpi · zp+i )/τ∑B
k=0 1k 6=i

∑
q∈S exp(zpi · zqk)/τ

(4)
where τ denotes the temperature in the loss, 1k 6=i

is an indicator function, B is the batch size and
S = {C,C ′, R} are the sequences in the batch.
The total contrastive loss LCL within a batch is
computed over all such positive pairs.

The overall loss is a weighted summation of the
cross-entropy and the contrastive loss,

L = LCE + λLCL (5)

where λ is a weight coefficient for the auxiliary
loss. We empirically set this value to 0.5 for all our
experiments. A careful reader might observe that
we introduce additional parameters in the skeleton
Bi-encoder architecture through the projection net-
work, however, they are only used during training
and discarded afterwards. During inference, the
model has a comparable number of parameters and
speed as a Bi-encoder.

3.3 ConMix Data Augmentation
We design a novel data augmentation method, Con-
Mix, to generate the augmented viewC ′i for a given
contextCi. ConMix creates augmentations through
dynamic mixing of words from other contexts in
the batch. In particular, for each Ci it selects a
random context Cj from the training batch and re-
places random words of Ci with words in the same
positions from Cj , to generate an augmented ver-
sion (C ′i). Figure 2 shows an illustrative example of
the mixing process. This introduces perturbations
to the original context and stochastically creates
variations which the model learns to recognize as
similar, and ranks the same response at the top
among other candidates. With the batch mixing
strategy the augmented context (C ′i) also serves as
a hard negative. This is because the augmented
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version C ′i has significant word overlap with Cj ,
the random context from where the replacement
tokens were chosen. Thus creating harder negative
pairs <C ′i, Rj> and <C ′i, Cj> in the main task loss
and the contrastive loss, respectively.

We adapt the Bernoulli MixUp approach (Beck-
ham et al., 2019) for mixing tokens of dialogue
contexts. In C ′i, we wish to retain the majority of
tokens from the original context Ci, and replace
the rest with tokens from a random context Cj . We
first sample a binary mask m ∈ {0, 1}n, where n
is the number of tokens in a context sequence.

C ′i = m ◦ Ci + (1−m) ◦ Cj , where i 6= j (6)

C ′i is the augmented view of context Ci, and Cj is
a randomly selected context from the same batch,
◦ denotes the Hadamard product. The binary mask
m is sampled from a Bernoulli(λmix) distribution
where λmix ∈ (0.5, 1] is the mixing coefficient.
The proportion of replaced tokens is controlled by
λmix. Intuitively, we should use a coefficient that
retains most of the words from the original context,
to ensure that the augmented context C ′i is label
invariant, i.e., can have the same next response Ri,
and is more similar to Ci than to Cj . In order to
preserve the higher-level dialogue structure, we re-
tain the end-of-turn (EOT ) markers in the context
while generating the binary mask.

The augmentations in our architecture are
stochastically generated during each epoch. There-
fore, for a contextCi, the augmented viewC ′i might
be different across epochs, depending on the ran-
dom selection of the mixing context Cj and re-
placed token positions within Ci. This enables the
model to see many variations of the same context
and learn to generalize across these representations.

4 Experiments

4.1 Datasets

We finetune and evaluate our response ranking mod-
els on the following four public task-oriented dia-
logue datasets:
1. Ubuntu V2: The Ubuntu V2 corpus (Lowe
et al., 2015) consists of conversations extracted
from Ubuntu chat logs, where people seek technical
support for various Ubuntu-related problems from
the community. We use a public repository1 to
generate the train/dev/test examples.

1https://github.com/rkadlec/ubuntu-ranking-dataset-
creator

Ubuntu v2
DSTC7

Taskmaster
Ubuntu Advising

Train examples 1M 100k 100k 192,821
Dev examples 19,560 5k 500 10,715
Test examples 18,920 1k 500 10,717
Eval candidates 10 100 100 51

Table 1: Statistics of the datasets: Ubuntu V2, Ubuntu
DSTC7, Advising DSTC7, and Taskmaster.

2. Advising DSTC7: The Advising dataset from
DSTC7 subtask 1 (Gunasekara et al., 2019) con-
tains dialogues in which university students seek
advise on classes to take. The dataset was built
upon expanding 815 original conversations by para-
phrasing. This dataset additionally contains profile
information for students, which we do not include
in our model to be consistent with other datasets.

3. Ubuntu DSTC7: The Ubuntu DSTC7 dataset is
similar to the Ubuntu V2 corpus, but it was further
disentangled and annotated from the original chat
logs data (Kummerfeld et al., 2018). We evaluate
our model on the subtask 1 of the DSTC7 challenge,
the goal of which is to select the most appropriate
response from 100 candidates.

4. Taskmaster: This dataset consists of written di-
alogues in the movie ticketing domain (Byrne et al.,
2019). We split the dialogues into train/dev/test
sets, and treat each system turn and its correspond-
ing dialogue context as a positive pair. For evalu-
ation, we randomly sample 50 negative responses
per context from all available system turns.

The dataset statistics are summarized in Table 1.
For each dataset, we calculate the 95th percentile
of its context and response lengths, and use these
values as the maximum sequence length in the cor-
responding encoders. We use a batch size of 20 for
Taskmaster and 32 for the other three datasets.

4.2 Implementation Details

We implement our models using the Pytorch deep
learning framework and the HuggingFace trans-
former library (Wolf et al., 2020). For implemen-
tation of the contrastive loss we use the Pytorch
metric learning library (Musgrave et al., 2020).
We set the mixing coefficient (λmix ) in ConMix
to 0.7, i.e., 30% of the tokens are replaced. We
use bert-base-uncased as our pre-trained en-
coder, and train all our models in an end-to-end
manner with Adam optimizer (Kingma and Ba,
2015) for fine-tuning.
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4.3 Baseline Augmentations

We explore and evaluate the following augmenta-
tion methods as baselines to compare with ConMix:
1. Subsequence sampling: Similar to cropping
(Chen et al., 2020) for images and span sampling
(Giorgi et al., 2020) for sentences, we explore a
subsequence sampling augmentation for dialogues.
We create augmentations by randomly truncating
the initial turns of a given context. We argue that
a response is more closely related to later turns in
the context compared to earlier ones, especially in
task-oriented dialogues. Hence such a strategy can
highly preserve the label from the original context.
2. Word deletion: We implement the word
deletion augmentation and hyperparameters as de-
scribed in (Wu et al., 2020b). Following (Wu et al.,
2020b), we randomly select 70% 2 of the words in
the dialogue history and replace them with the spe-
cial token [DEL]. We merge consecutive [DEL]
tokens into one.
3. Word reordering: We randomly sample several
pairs of words in a dialogue context, and switch
them pairwise. We swap 30% of the words similar
to our proposed ConMix. In contrast to ConMix,
this method only mixes words within a single dia-
logue context.
4. Word replacement: We randomly replace 30%
of the words in a context with random words. In
contrast to ConMix, this method replaces context
words with words from the full vocabulary, and not
only with words from the same training batch.

Similar to ConMix we protect the special token
EOT from being replaced in all baseline augmen-
tations to preserve the dialogue structure.

5 Results and Discussion

We use Recall@1 and MRR as evaluation metrics
and report numbers after averaging over 3 runs.

5.1 Performance on Response Ranking

We first demonstrate our proposed model architec-
ture’s compatibility and effectiveness with ConMix,
along with other baseline data augmentations. For
each augmentation method, we conduct an ablation
study to separately understand the effects from data
augmentation, and the benefits obtained from the
addition of contrastive learning. For a fair base-
line comparison we include Bi-encoder (Humeau

2We also conducted experiments with word deletion rate
of 30% similar to ConMix but it underperformed the variant
with recommended 70% deletion rate

et al., 2019), which has a comparable number of
parameters and architecture. Larger model architec-
tures such as Poly-encoder (Humeau et al., 2019)
or Cross-encoder (Wolf et al., 2019) are orthogonal
to our approach, and can potentially be adopted
as backbone architecture for our model. We leave
those explorations for future work.

Results on four ranking datasets for all model
variants are presented in Table 2. We observe
that our proposed DialAug architecture signifi-
cantly outperforms the baselines across all datasets.
Specifically, our model with proposed ConMix aug-
mentation and contrastive loss achieves an absolute
gain of 0.8%, 1.9%, 1.0% and 2.3% for Recall@1
metric over Bi-encoder, on the four datasets respec-
tively. This shows that textual variations injected
in the input sequences through augmentations re-
sult in representations that generalize better to the
unseen test set.

Second, we note that our proposed augmenta-
tion method, ConMix, consistently outperforms
the baseline augmentations in all datasets by a fair
margin, except for Ubuntu DSTC7. We find that
the word reordering augmentation, which shuffles
words within a context, is not as effective as the
other augmentations. In this method, words are
neither introduced nor removed from the context,
and the model learns from the same bag-of-words
as the original context. On the other hand, through
deletion augmentation words get omitted from the
context, and the model needs to learn to predict
the response while some words are missing. Con-
Mix takes this a step further, and not only removes
some of the words from the context, but also re-
places them with other random words. This forces
the model to learn the task in a much harder setting
with observing many variations of the same context
over the epochs. As hypothesized ConMix outper-
forms the global word replacement method due to
the added advantage of strategic in-batch mixing,
infusing word overlaps in a controlled manner and
supplementing harder negatives.

Finally, we note that contrastive learning (rows
with + CL) helps boost performance further, com-
pared to corresponding model versions without
the additional objective. This indicates the ef-
fectiveness of learning to contrast partial views
of a dialogue for better representation learning of
the context. Moreover, we see that for relatively
smaller sized dataset from the DSTC7 challenge,
contrastive learning acts as an effective regularizer
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Models
Ubuntu V2 Advising DSTC7 Ubuntu DSTC7 Taskmaster

R@1/10 MRR R@1/100 MRR R@1/100 MRR R@1/50 MRR
Bi-Encoder 82.8±.3 89.5±.2 21.1±.4 33.3±.1 56.7±.7 66.0±.3 87.8±.2 89.6±.2
DialAug + Subsequence 83.0±.0 89.7±.0 21.6±.3 34.2±.1 57.1±.8 66.7±.7 86.9±.2 89.1±.1
DialAug + Subsequence + CL 82.9±.1 89.6±.0 20.6±.3 33.1±.3 56.9±.1 66.7±.2 87.6±.2 89.5±.1
DialAug + Deletion 83.2±.1 89.8±.1 21.5±.1 34.2±.6 57.4±.6 67.2±.5 88.2±.3 90.1±.2
DialAug + Deletion + CL 83.3±.1 89.8±.1 21.7±.1 34.9±.3 58.1±.4 67.8±.6 88.5±.2 90.2±.1
DialAug + Reordering 82.7± .2 89.5±.1 19.7±1.0 33.3±1.4 56.2±.6 66.0±.2 87.9±.2 89.8±.1
DialAug + Reordering + CL 82.9±.1 89.6±.1 19.4±.6 33.3±.2 55.8±.4 65.5±.3 88.0±.1 89.9±.1
DialAug + Replacement 82.8±.1 89.5±.1 19.4±.3 31.6±.7 57.5±.7 67.1±.6 89.5±.1 90.9±.1
DialAug + Replacement + CL 82.9±.1 89.6±.1 20.9±.7 33.1±.4 58.0±.7 67.3±.4 89.0±.2 90.6±.1
DialAug + ConMix 83.4±.1 89.9±.0 21.8±1.4 34.9±.4 56.8±.3 66.6±.2 90.4±.1 91.4±.0
DialAug + ConMix + CL 83.6±.1 90.0±.0 23.0±.8 36.0±.7 57.7±.4 67.0±.1 90.1±.3 91.3±.2

Table 2: Results on the Ubuntu V2, Advising DSTC7, Ubuntu DSTC7, and Taskmaster datasets. Results were
averaged over three runs, and ± denotes the standard deviation. The numbers in bold denote the best performing
model for each dataset.

and can significantly reduce standard deviations
of the metrics (1.4 to 0.8 for Recall@1 metric for
ConMix augmentation on Advising, and 0.8 to 0.1
from for Subsequence augmentation on Ubuntu).

5.2 Evaluating Robustness to Perturbations
Next we evaluate the data augmentation methods
on various perturbations introduced in the dialogue
context in the test set. Through this series of ex-
periments we evaluate how robust the model is for
different formulations and rewrites of input con-
texts.

Specifically, we introduce three perturbations
that are similar to the augmentation methods used
during training:
1. Truncation: Similar to subsequence sampling,
we randomly truncate dialogue contexts to remove
earlier turns.
2. Word deletion: Delete words with a 30%
deletion rate.
3. Word reordering: Reorder words with 30%
probability.
We include two additional reformulations that are
commonly observed during real-world deployment
of models:
4. Typos: We implement the vanilla noise model
(Namysl et al., 2020) with noise level 0.1 to cap-
ture character-level variations caused by typos. We
randomly change 30% of words in the context.
5. Synonym replacement: To capture lexical vari-
ations, we randomly replace 30% of words from
the context with their synonyms using a pre-defined
vocabulary (Jia et al., 2019).

We apply the perturbations independently on the
original test sets and evaluate our DialAug model
architecture in combination with different training

augmentation methods on these harder test sets. As
baselines with no augmentations, apart from Bi-
encoder, we also include the more powerful Poly-
encoder (Humeau et al., 2019) architecture in this
evaluation setup.

As can be seen from the results of Table 3, train-
ing on augmented data helps significantly against
adversarial examples during inference, compared
to baseline models trained with no augmentation. It
is interesting to note that a more expressive model
such as Poly-encoder, with an order of magnitude
larger number of parameters, is still susceptible to
adversarial perturbations and under-performs the
proposed DialAug model that leverages data aug-
mentations. These experiments demonstrate that
robustness to noise does not come out-of-the-box
for larger models. Instead, strategic data augmen-
tation methods such as ours, that expose a model
to diverse training data, can learn to handle these
variations effectively.

Comparing among different augmentation meth-
ods, it is not surprising to find that a model trained
with one augmentation (e.g. subsequence sam-
pling) performs well when exposed to that specific
type of perturbations (e.g. truncation) during test.
However, they do not generalize well to a different
type of noise seen during test (e.g. model trained
with deletion based augmentation and tested on
reordering). ConMix, on the other hand, is con-
sistently robust to different perturbations across
the four adversarial datasets, even though it had
not been trained specifically for them. It performs
on par or better than the specific data augmenta-
tions such as deletion and reordering when exposed
to those perturbations during test. For more com-
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Dataset: Ubuntu V2
Augmentation
in training

truncation deletion reordering typo synonym
Rec@1 MRR Rec@1 MRR Rec@1 MRR Rec@1 MRR Rec@1 MRR

NA (Bi-encoder) 69.0±.2 79.7±.1 69.6±.6 80.2±.0 79.6±.1 87.5±.0 80.8±.1 88.3±.1 79.6±.2 87.4±.1
NA (Poly-encoder) 69.2±.2 79.7±.1 71.1±.3 81.2±.2 80.6±.1 88.0±.0 81.9±.2 88.2±.1 80.7±.3 88.1±.1
Subsequence 72.1±.2 82.1±.2 68.3±.4 79.0±.0 79.8±.1 87.5±.1 81.1±.2 88.4±.1 79.5±.2 87.4±.1
Deletion 70.0±.1 80.3±.1 73.1±.2 82.8±.2 80.4±.1 87.9±.1 81.5±.2 88.7±.1 80.4±.1 87.9±.1
Reordering 69.4±.2 79.9±.1 72.2±.1 82.0±.0 80.5±.1 88.0±.0 81.1±.1 88.4±.0 80.5±.1 87.9±.0
Replacement 69.5±.1 79.7±.1 69.6±.5 80.3±.3 79.8±.3 87.5±.1 80.9±.1 88.3±.1 79.7±.1 87.5±.1
ConMix 68.8±.2 79.5±.1 73.1±.1 82.8±.1 81.3±.1 88.5±.1 82.1±.1 89.1±.1 81.2 ±.0 88.5±.0

Dataset: Advising DSTC7
Augmentation
in training

truncation deletion reordering typo synonym
Rec@1 MRR Rec@1 MRR Rec@1 MRR Rec@1 MRR Rec@1 MRR

NA (Bi-encoder) 18.4±1.4 29.2±.5 15.5±.1 26.1±.1 14.8±.3 25.7±.4 18.3±.7 30.3±.4 19.6±.8 30.7±.6
NA (Poly-encoder) 17.5±.9 28.5±1.4 17.9±1.5 29.7±1.3 15.0±.8 26.4±1.0 13.1±.4 25.1±.0 17.0±2.5 28.6±2.3
Subsequence 19.7±.1 31.7±.1 16.3±.7 27.0±.4 15.4±.8 26.3±.2 18.9±.7 31.1±.5 18.0±.8 29.9±.6
Deletion 18.6±.8 30.4±.1 17.6±.3 29.4±.2 16.6±.0 28.5±.0 19.3±1.3 32.2±.9 18.6±.0 31.8±.4
Reordering 19.0±.0 29.6±.4 15.9±1.8 27.8±1.3 17.1±.1 30.4±.5 18.7±1.3 31.9±.6 18.1±1.0 31.0±.3
Replacement 17.7±.8 28.6±.2 14.6±.5 24.8±.9 12.7±.7 23.6±1.1 18.0±.3 29.7±.1 16.3±.1 28.2±.1
ConMix 18.6±.0 29.8±.2 16.2±.6 28.0±.1 18.3±.7 30.2±.2 19.6±1.4 32.7±.5 20.9±1.0 33.2 ±.9

Dataset: Ubuntu DSTC7
Augmentation
in training

truncation deletion reordering typo synonym
Rec@1 MRR Rec@1 MRR Rec@1 MRR Rec@1 MRR Rec@1 MRR

NA (Bi-encoder) 42.3±.1 51.7±.3 52.3±.0 61.9±.3 47.9±.6 57.6±.3 48.0±.0 58.2±.4 51.6±.4 61.5±.2
NA (Poly-encoder) 41.2±.8 51.3±.3 49.6±1.1 60.1±.9 47.9±.5 57.5±.2 45.2±.1 56.2±.1 50.6±.4 61.4±.1
Subsequence 45.7±.2 55.8±.2 47.6±.6 58.3±.2 47.5±.8 58.3±.4 50.8±.3 61.8±.3 52.3±.9 62.6±.4
Deletion 42.4±1.4 52.7±.6 54.6±.2 64.3±.3 50.3±.3 60.8±.2 53.5±.1 63.5±.1 52.9±.6 63.6±.0
Reordering 41.6±.3 51.2±.6 50.1±.9 59.7±.7 52.8±.3 62.8±.2 51.5±.4 61.7±.3 51.7±.4 62.0±.4
Replacement 43.9±1 53.6±.9 49.7±1 59.9±1 52.1±2.5 62.3±1.7 54.2±.4 64.4±.2 55.0±.7 64.7±.5
ConMix 44.0±.6 52.8±1 50.5±.4 60.8±.5 54.1±.5 63.8±.3 54.5±.4 64.2±.5 54.5±.2 64.1±.2

Dataset: Taskmaster
Augmentation
in training

truncation deletion reordering typo synonym
Rec@1 MRR Rec@1 MRR Rec@1 MRR Rec@1 MRR Rec@1 MRR

NA (Bi-encoder) 76.5±.5 80.8±.4 79.5±.1 84.2±.1 76.5±.2 82.1±.2 87.6±.3 89.6±.2 84.6±.2 87.7±.1
NA (Poly-encoder) 77.1±.0 81.3±.0 79.6±.4 84.2±.2 76.5±.3 82.0±.2 88.0±.1 89.8±.1 84.8±.2 87.8±.1
Subsequence 85.7±.2 88.1±.1 79.9±.2 84.4±.2 74.5±.8 80.4±.5 87.6±.2 89.5±.1 84.2±.4 87.4±.2
Deletion 76.4±.0 80.6±.0 86.4±.2 88.8±.1 86.0±.3 88.5±.2 88.5±.2 90.2±.1 86.5±.3 88.9±.2
Reordering 75.9±.3 80.2±.2 83.9±.2 87.2±.1 89.1±.3 90.6±.2 88.0±.1 89.9±.1 86.3±.1 88.8±.1
Replacement 74.5±.4 79.5±.2 77.0±.5 82.4±.3 71.9±1.0 78.6±.6 86.7±.4 88.4±.3 82.3±.9 86.2±.6
ConMix 81.3±.4 81.3±.3 85.0±.3 87.9±.2 88.2±.3 90.1±.2 90.1±.3 91.3±.2 89.3±.3 90.8±.2

Table 3: Robustness during inference for different augmentation strategies. All models using augmentions were
trained with contrastive loss. Results were averaged over three runs, and ± denotes the standard deviation.

mon and realistic variations, i.e., synonyms and
typos, ConMix significantly outperforms all other
methods on three datasets. This indicates a uni-
formly powerful and robust representation learning
method through this novel augmentation strategy.

5.3 Computational Efficiency

ConMix is designed and implemented to generate
augmentations through vectorization and therefore
has the benefit of being faster to train. Tokens are
randomly mixed on-the-fly within a batch to cre-
ate augmentations in parallel on GPUs, through
fast tensor multiplications. For many augmentation
methods, such vectorization might be non-trivial
and the overall speed becomes limited by the pro-
cess of creating augmentations outside the training

loop on much slower CPUs. For example, when
training on the Taskmaster dataset with 8 gpus, the
DialAug architecture with ConMix is 1.2x faster
than training with the global word replacement aug-
mentation. While conducting full training over 20
epochs this leads to an overall speed up by 1.5
hours for training with the ConMix augmentation.

6 Summary

In this work we proposed DialAug, a modular archi-
tecture for conversational response ranking. It com-
bines the traditional cross-entropy loss for rank-
ing with a contrastive counterpart to learn from
augmented views of the dialogue context. We pre-
sented a novel data augmentation method, ConMix,
which generates multiple views of the same con-
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text via stochastic mixing of tokens from other con-
texts in the batch during training. We conducted
an extensive set of experiments on four datasets
and show that a model trained with ConMix out-
performs strong baselines and other augmentation
methods. Our proposed model is also proven to be
robust against common perturbations encountered
during inference. We hope our work encourages
further research in such data-centric methods to
improve robustness of NLP models for practical
applications of conversational modeling.
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