@inproceedings{zhang-liu-2022-metaphor,
title = "Metaphor Detection via Linguistics Enhanced {S}iamese Network",
author = "Zhang, Shenglong and
Liu, Ying",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.364",
pages = "4149--4159",
abstract = "In this paper we present MisNet, a novel model for word level metaphor detection. MisNet converts two linguistic rules, i.e., Metaphor Identification Procedure (MIP) and Selectional Preference Violation (SPV) into semantic matching tasks. MIP module computes the similarity between the contextual meaning and the basic meaning of a target word. SPV module perceives the incongruity between target words and their contexts. To better represent basic meanings, MisNet utilizes dictionary resources. Empirical results indicate that MisNet achieves competitive performance on several datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-liu-2022-metaphor">
<titleInfo>
<title>Metaphor Detection via Linguistics Enhanced Siamese Network</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shenglong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ying</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present MisNet, a novel model for word level metaphor detection. MisNet converts two linguistic rules, i.e., Metaphor Identification Procedure (MIP) and Selectional Preference Violation (SPV) into semantic matching tasks. MIP module computes the similarity between the contextual meaning and the basic meaning of a target word. SPV module perceives the incongruity between target words and their contexts. To better represent basic meanings, MisNet utilizes dictionary resources. Empirical results indicate that MisNet achieves competitive performance on several datasets.</abstract>
<identifier type="citekey">zhang-liu-2022-metaphor</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.364</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>4149</start>
<end>4159</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Metaphor Detection via Linguistics Enhanced Siamese Network
%A Zhang, Shenglong
%A Liu, Ying
%S Proceedings of the 29th International Conference on Computational Linguistics
%D 2022
%8 October
%I International Committee on Computational Linguistics
%C Gyeongju, Republic of Korea
%F zhang-liu-2022-metaphor
%X In this paper we present MisNet, a novel model for word level metaphor detection. MisNet converts two linguistic rules, i.e., Metaphor Identification Procedure (MIP) and Selectional Preference Violation (SPV) into semantic matching tasks. MIP module computes the similarity between the contextual meaning and the basic meaning of a target word. SPV module perceives the incongruity between target words and their contexts. To better represent basic meanings, MisNet utilizes dictionary resources. Empirical results indicate that MisNet achieves competitive performance on several datasets.
%U https://aclanthology.org/2022.coling-1.364
%P 4149-4159
Markdown (Informal)
[Metaphor Detection via Linguistics Enhanced Siamese Network](https://aclanthology.org/2022.coling-1.364) (Zhang & Liu, COLING 2022)
ACL