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Abstract
Knowledge-grounded dialog systems need to
incorporate smooth transitions among knowl-
edge selected for generating responses, to en-
sure that dialog flows naturally. For document-
grounded dialog systems, the inter- and intra-
document knowledge relations can be used to
model such conversational flows. We develop
a novel Multi-Document Co-Referential Graph
(Coref-MDG) to effectively capture the inter-
document relationships based on common-
sense and similarity and the intra-document co-
referential structures of knowledge segments
within the grounding documents. We propose
CorefDiffs, a Co-referential and Differential
flow management method, to linearize the static
Coref-MDG into conversational sequence logic.
CorefDiffs performs knowledge selection by
accounting for contextual graph structures and
the knowledge difference sequences. CorefD-
iffs significantly outperforms the state-of-the-
art by 9.5%, 7.4% and 8.2% on three public
benchmarks. This demonstrates that the effec-
tive modeling of co-reference and knowledge
difference for dialog flows are critical for tran-
sitions in document-grounded conversation1.

1 Introduction

Document-grounded conversations (Moghe et al.,
2018; Dinan et al., 2018; Feng et al., 2021b) is
a core class of knowledge-grounded dialogs that
leverage text-based knowledge segments from doc-
uments to generate informative dialog responses.
This task is typically divided into two sub-tasks,
given the dialog history (Dinan et al., 2018):
namely, knowledge selection and response genera-
tion. Knowledge selection, which determines the
content of the generated responses (Moghe et al.,
2018; Dinan et al., 2018), is the crucial sub-task for
dialog flow management as it leads to the manifes-
tation of knowledge transition (Meng et al., 2020),
essential for naturalistic engaging conversations.

1The source code has been released at https://github.com/
cathyxl/coref-diffs
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Conversation:
Usr1: I like science fiction
Bot1: yes. i like movies that use speculative, fictional science...depictions
[Science fiction film, sent-1] 

Usr2: I liked the star wars movies and the alien ...
Bot2: I wish i was able to see star wars in 1977. [Star wars (film), sent-1]
Usr3: I loved the tv series.
Bot3: I prefer the film that stars mark hamill and harrison ford.[Star 
wars (film), sent-3]

Usr4: I like that one too. the first sci fi film was...
Bot4: Cool. Did you ever see the empire strikes back in 1980? ... [The 
empire strikes back, 1]
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Figure 1: Co-Referential Multi-Document Graph
(Coref-MDG). Topic vertices correspond to documents
and are connected by commonsense/word overlap rela-
tions. Knowledge vertices are connected with its topic
vertex by its document sentence index, e.g.sent-1, and
connected to each other by co-reference (co-ref) rela-
tions. The Bot’s utterances are followed by its topic and
knowledge segment, e.g.[Science fiction film, sent-1].

Most existing studies on document-grounded
conversations (Lian et al., 2019; Zheng et al., 2020;
Zhao et al., 2020) treat knowledge selection as
a matching problem between the dialog context
and individual knowledge segments, independently.
However, for document-grounded conversations,
we posit that there is an implicit alignment between
the background knowledge and conversation logic
which can be learned from the underlying structural
relationships of the knowledge segments within and
between the grounding documents. For example,
the conversation in Figure 1 exhibits document-
level topic flow, from science fiction -> star wars->
the empire strikes back, and deep dives into the
specifics of the star wars document (Turns 2 to 3).

To effectively exploit the relationships of the
knowledge segments to guide dialog flows would
require a thorough comprehension of the intra-
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Figure 2: Exploiting knowledge segment relationships.
k1-7 represent knowledge segments and doc1-3 are the
grounding documents they belong to.

document discourse structures and inter-document
relationships for the knowledge selection process.
Existing works either ignore such relations (as illus-
trated in Figure 2 (a)), or exploit limited local cor-
relations (as depicted in Figure 2 (b)), for example
by encoding knowledge segments within passage
context Wu et al. (2021) . In this work, we propose
to capture both intra- and inter-document relation-
ships of the knowledge segments (Figure 2 (c))
in the grounding documents to guide the smooth
and natural knowledge selection and transitions
for document-grounded conversations. However,
how to apply such a static knowledge graph to dia-
log flow management has always been a problem.
Many previous studies (Moon et al., 2019; Xu et al.,
2021a,b) have used graph structures to constrain
search (e.g. confining the next topic to neighboring
areas), but have also ignored deeper integration of
dialog contexts and knowledge graphs, such as op-
timal knowledge representation to capture dialogue
flow information.

Based on the considerations above, we propose
to first capture the inter- and intra-document knowl-
edge relationships as a heterogeneous document
graph, and then exploit the graph effectively for di-
alog flow management through fine-to-coarse con-
textualization — from the local word-level knowl-
edge attentions, to knowledge interactions in doc-
ument graphs, and finally to the knowledge tran-
sition flow along dialogue turns. Specifically, we
design a two-level document graph consisting of
topic (i.e. document) and knowledge vertices con-
nected by inter- and intra-document relations (Fig-
ure 1). The topic vertices correspond one-to-one
to the grounding documents, while the knowledge
vertices refer to the knowledge segments from each
document. The knowledge vertices are connected
to the corresponding topic vertices they belong
to. Meanwhile, the graph connects the knowl-
edge segments within the same document by their
co-referential mentions, and the documents are
connected based on similarity or commonsense

relationships. Hence we call the graph Multi-
Document Co-referential Graph (Coref-MDG).

We then propose our CorefDiffs method which
leverages Coref-MDG’s graph structure and inte-
grates dialog flow for knowledge contextualization
and selection. CorefDiffs focuses on the inter-turn
knowledge difference flow in the dialog histories by
means of a novel differential linearization module.

Our contributions in this paper can be summa-
rized as follows. 1) We develop Coref-MDG,
a novel multi-document graph structure incorpo-
rating co-referential mentions. When leveraged
in guiding document-grounded conversations in
our CorefDiffs methodology, it empirically outper-
formed alternative graph structures; 2) We system-
atically study the different kinds of inter- and intra-
document relations and show that document-level
semantics, such as co-reference and sentence order,
are significant factors for knowledge selection (Sec.
4.4); 3) Our CorefDiffs achieves state-of-the-art
on WoW, Holl-E, multidoc2dial and CMU-DOG
datasets, for both knowledge selection and response
generation tasks.

2 Related Work

Document-grounded dialog Systems. Early
works on document-grounded dialog sys-
tems (Ghazvininejad et al., 2018) focused on
generating responses directly by copying words
from the external documents. The subsequent
availability of datasets with knowledge an-
notations (Dinan et al., 2018; Moghe et al.,
2018) has led to the separation of the tasks of
knowledge selection and response generation.
For knowledge selection, most works (Dinan
et al., 2018; Lian et al., 2019; Zheng et al.,
2020; Zhao et al., 2020; Meng et al., 2021)
in document-grounded conversations directly
modeled correlations between dialog contexts
and knowledge through independent matching
and optimized the correlations by modeling
knowledge sequence (Kim et al., 2019), increasing
knowledge informativeness (Zheng et al., 2020)
or distinguishing initiative roles (Meng et al.,
2021). A recent work (Wu et al., 2021) boosted
knowledge selection by encoding knowledge
within the passage context, which demonstrates the
importance of exploiting knowledge relations. Our
work further explores more effective document
structures and connections for this task. There
is also an unpublished paper that used document
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Dialogue History

𝑢𝑡−1: Blue is always nice. I like royal blue.
𝑟𝑡−1: I once rode on the royal blue train from new york to d.c
𝑢𝑡: Oh that sounds really nice. i bet there was a lot of scenery 
and blue skies.

𝑟𝑡: yes, speaking of blue skies, have you seen the 1946 movie 
staring bing crosby?
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I. Local Association

x

II. Structural Propagation

Figure 3: CorefDiffs Architecture. Green round rectangles and blue circles are topic and knowledge vertices,
respectively. Steps I to III contextualize knowledge in an increasingly fine-grained manner: first, I) by vertex
embedding by BERT; then, II) by propagating Coref-MDG information, and finally III) by linearizing the knowledge
representations, according to the dialog’s historical knowledge sequence.

semantic graphs (Li et al., 2022), while our work
considers end-to-end integration of document
graph and dialog flow which gives better result
compared to theirs.

Knowledge Graph for Conversations. Knowl-
edge graphs were also often used in dialog manage-
ment, such as dialog transition graphs (Xu et al.,
2019, 2020a) constructed from common transitions
present in a dialog corpus and off-the-shelf com-
monsense graphs (Zhou et al., 2018a). There were
also some works (Liu et al., 2019; Xu et al., 2021a)
transforming unstructured text into structures or
combining triplets and texts into graphs. For exam-
ple, (Xu et al., 2021a) constructed key phrases into
graphs according to their order in stories. Interest-
ingly, to the best of our knowledge, co-reference
mentions have not been considered in such doc-
ument graph construction although it has been
proved critical in learning language models for rea-
soning intensive NLP tasks (Dasigi et al., 2019; Ye
et al., 2020). To apply knowledge graphs for dialog,
many existing works (Xu et al., 2020b,a) used the
graph structures to confine the search space and
optimized selection through hand-crafted rewards.
In contrast, we incorporate the knowledge graph
into dialog management by learning knowledge
representations from the graph structure.

Sequence Learning in dialog. Sequence learning
is essential for conversations. Several studies (Kim
et al., 2019; Zhan et al., 2021b) explored the histor-
ical knowledge sequence to select knowledge for
document-grounded dialog. For example, (Kim
et al., 2019) captured knowledge sequence by a
latent variable, while (Zhan et al., 2021b) further
proposed to learn abstract topic sequence to miti-
gate the issues of knowledge sparsity and knowl-

edge transition noise. Inspired by the importance
of exploiting knowledge difference (Zheng et al.,
2020) for informative dialog, we extend the use
of dialog knowledge differences into sequences,
thus capturing the knowledge shift patterns from
turns with longer distances as well as the sequential
patterns of knowledge transitions in a dialogue.

3 Approach

Figure 3 shows the overall architecture of our ap-
proach. As shown in the Dialog History part, in
each data sample, given a dialog history U =
{ut−l, rt−l, ..., rt−1, ut} of l turns and a set of
grounding documents D = {d1, .., di, ..., d|D|},
where u∗ and r∗ are utterances from the user and
chatbot, respectively. di = {ki1, ki2, ..., ki|di|} is a
document containing a bunch of knowledge seg-
ments, our task is to select the most appropriate
knowledge segment from the grounding documents
D (i.e. the knowledge selection subtask) and gener-
ate the chatbot’s next response rt based on the se-
lected knowledge (i.e. the response generation sub-
task). Each grounding document di has a phrase ti
as its topic. For example, the document of wikipage
blue has the topic phrase blue.

3.1 Coref-MDG Construction

We devise a Multi-Document Co-referential Graph
(Coref-MDG) to capture the inter-document and
the intra-document relations. Each data sample gets
a specific Coref-MDG, denoted as G = {V, E},
where V , E are vertices and edges respectively.
Vertices V . Our Coref-MDG consists of two types
of Vertices: topic and knowledge vertices, as shown
in Figure 1. Each topic vertex represents one of
document di from D while each knowledge vertex
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represents a knowledge segment kij from a docu-
ment di, hence in total M = |D| topic vertices and
N = |d1|+ ...+ |d|D|| knowledge vertices.
Edges E . There are also multiple types of edges in
Coref-MDG. We can generally divide these edges
into three categories according to their vertices: 1)
edges between topics and knowledge vertices;
2) topic edges –these are inter-document or inter-
topic edges between topic vertices; 3) knowledge
edges –intra-topic edges amongst knowledge ver-
tices. For the first category, we simply use the
order index of segment kij appearing in its corre-
sponding document di as the edge type, denoted
as sent_j edge, thus knowledge vertices under
different topics are not connected in Coref-MDG.
The remaining two types of edges are constructed
as follows.

3.1.1 Topic Edges

We posit that topic transitions in human-to-human
conversations are likely to be based on the similar-
ity or commonsense relations between two topics,
such as from sci-fi movie to sci-fi novel (similarity),
or from UK to London (commonsense). We intro-
duce two corresponding types of topic edges for
such topic transitions.
Word Overlap. We use the word overlaps between
two topics (or documents) to measure their simi-
larity. Specifically, we obtain the lemmas of topic
phrases by spaCy2 and judge whether the two top-
ics have at least one identical lemma so as to de-
termine whether these two topics vertices have a
word_overlap edge.
Commonsense. Since the knowledge backend
of the WoW (Dinan et al., 2019) came from the
Wikipedia corpus, we use the WikiData3 to obtain
commonsense relations between topics. We only
collected relations for the topics in the training
set and for cimplicity, we kept the high-frequency
relation types, for example city_of, while uni-
formly treating the low-frequency relation types as
others.

3.1.2 Knowledge Edges

For the intra-document knowledge relations, we
introduce the coreference_link edge. For
each topic (i.e. document), the co-reference links
(referring paths) within the corresponding docu-
ment di can be extracted by a co-reference res-

2https://spacy.io/, MIT License
3https://www.wikidata.org/wiki/Wikidata:Main_Page

olution model. 4 For each co-reference link,
every knowledge segment on this link is con-
nected to its mentions by a coreference_link
edge. Aside from our proposed co-reference
edges, we also model two other knowledge
edge type for comparison, common_entity and
partial_order. The former connects knowl-
edge segments that share entities, while the latter
captures knowledge segment’s partial order. We
will show later that co-reference performs best for
dialog flow management.

3.2 Structural Propagation and Linearization

Next, we introduce how we contextualize each ver-
tex in a dialog’s Coref-MDG with both the graph
structure and dialog flow.

3.2.1 Node Initialization

Following (Karpukhin et al., 2020; Cheng et al.,
2020; Wu et al., 2021), we adopt BERT (Devlin
et al., 2019) to obtain the text representations to
initialize topic and knowledge vertices, as shown
by the Step I in Figure 3. Specifically, we con-
catenate the dialog context U with each grounding
document’s topic phrase and knowledge segments,
and feed them into the BERT encoder to get their
associated representations. The concatenated input
for a document di is thus:

[cls]Ût[sep]ti[cls]k
i
1...[cls]k

i
|di|[sep] (1)

where Û = [usr]ut[agt]rt−1...[usr]ut−l is the
spliced dialog context, and the role symbols [usr]
and [agt] indicate utterances from the user or agent
turn. We use the hidden state of the first [cls] to-
ken ti (note that we use bold here to refer to the
representation of, in this case, topic phrase ti) as
the initialized representation for the topic vertex of
di. Similarly, the outputs of the subsequent [cls]
tokens, denoted as {ki

1,k
i
2, ...,k

i
|di|}, are gathered

and used to initialize the corresponding knowledge
vertices of di. The process is formulated as:

ti,K
i = BERT(Ut, di), i ∈ [1, |D|] (2)

where ti,k
i
j ∈ Rdinit ,Ki = {ki

j}
|di|
j=1. In this

way, we obtain the initialized vertex embedding
for a Coref-MDG as H0 = {ti;Ki}|D|

i=1 ∈
R(M+N)×dinit .

4https://github.com/huggingface/neuralcoref, MIT License
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3.2.2 Residual Graph Propagation
Knowledge transitions in document-grounded di-
alogs can be divided into two types namely, tran-
sition across different documents (out-topic) and
within the same document (intra-topic). Transi-
tions across different documents occur between
topic vertices in our Coref-MDG and usually re-
quires multi-hop reasoning. We use the resid-
ual graph propagation (Step II in Figure 3) to
model such transitions in Coref-MDG. Specifi-
cally, we devise a variant of Relational Graph
Attention Layer(RGAT) (Busbridge et al., 2019)
layer with concatenated residual connection (He
et al., 2016), named RES-RGAT. This layer facili-
tates the deeper multi-hop information propagation
by avoiding information loss and the over-smooth
problem (Oono and Suzuki, 2019). The output
Hout ∈ R|G|×dout of one RES-RGAT is the con-
catenation of the propagated results and the input
Hin ∈ R|G|×din , which is formulated as:

Hout = W [Hin, RGAT(Hin,R, E ,G)] (3)

where R ∈ RE×de is the embedding look-up ta-
ble for all the edge types in E , E is the number
of edge types, and W ∈ Rdout×2din is used for
dimension transform. We stack n layers of RES-
RGAT to do enough propagation based on em-
pricially determined n. With H0 as input, we
obtain the propagated outputs for all vertices as
HG ∈ R(M+N)×dG .

3.2.3 Differential Linearization
To integrate the dialog flow information into the
knowledge representations after graph propaga-
tion, we propose a novel Differential Lineariza-
tion (Step III in Figure 3) method. While knowl-
edge sequence has been used for knowledge se-
lection in dialog (Kim et al., 2019), knowledge
shift sequence (or shifting sequence), defined as
the sequence of knowledge differences within each
consecutive turns, is a relatively novel notion for
this task. We argue that the shifting sequence is
a more useful feature for learning and predicting
knowledge transitions since it focuses on the differ-
ence and interaction between knowledge, leading
to sharper features. It also captures the transition
patterns from turns using varying distances to the
current turn to further aid in the selection.

To construct the shifting sequence, we first ob-
tain the knowledge/topic vertices that appeared in
the previous chatbot turns (since we note that the

labels of the user turns are inaccessible in prac-
tice). By collecting these knowledge/topic ver-
tices’ representations from HG, we can get the
sequence S = {hG

t−τ , ...,h
G
t−1} for knowledge and

topic vertices, respectively. Here τ is the length
of turns. Since we treat topic and knowledge ver-
tex sequence identically, we will refer to them as
simply vertices in the following discussion. We
compare the vertex i with these historical vertices
in S with a comparison function F to get the dif-
ferential sequence for vertex i. By doing this for
all vertices, we get M +N such sequences:

{F(hG
t−τ ,h

G
i ), ...,F(hG

t−1,h
G
i )}M+N

i=1 (4)

F computes the interaction between two vectors
a,b ∈ Rd by element-wise difference and product,
defined as F(a,b) = [a− b;a⊙ b] (Chen et al.,
2017).

With the sequence for vertex with index i, we
finalize its representations in sequential transition
dependency. Specifically, we feed each sequence
into a stacked GRU (Cho et al., 2014) cells and use
the last hidden state as the final linearized vertex
representation. We concatenate the graph repre-
sentation of vertex hGi and the linearized output:

hD
i = [GRU(...,F(hG

t−1,h
G
i ));h

G
i ] ∈ R2dG (5)

The vertex representation in graph after lineariza-
tion is HD ∈ R(M+N)×2dG , which will then be
used to predict the next topic and knowledge seg-
ment.

3.3 Training

Note that topic selection is an auxiliary task in our
framework, apart from the knowledge selection.
As such, we split the representations for topic ver-
tices and knowledge vertices from HD and obtain
HD

tpc ∈ RM×2dG and HD
knl ∈ RN×2dG , respec-

tively. HD
tpc is fed into a linear layer to obtain the

topic selection scores. For the knowledge vertices,
we further include their connected topic vertex rep-
resentations and the in-between edge embedding to
calculate the knowledge selection scores similarly
with a linear layer.

Following Wu et al. (2021), we implement the
history loss as an auxiliary objective function in
our framework to further utilize the dialog history
information. Finally, the overall objective function
we adopt is formulated as follows:
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Method dialogs Avg Turns Domain Document

WoW 22311 9 Open Domain Multiple
Holl-E 9071 10 Movie Single
CMU-DoG 4112 31 Movie Single
MultiDoc2Dial 4796 14 Info Seek Multiple

Table 1: Dataset statistics.

L = Lknl + Ltpc + Lhist

Lhist =
1

2l

l∑
hi=1

(Lhi
knl + Lhi

tpc)
(6)

where l is a hyperparameter representing the his-
tory length, Lknl and Ltpc are knowledge and topic
losses, respectively. All of the classification objec-
tive functions in L are standard cross-entropy.

4 Experiments

Datasets. We validate our method on four public
benchmarks for document-grounded conversation,
WoW (Dinan et al., 2018), Holl-E (Moghe et al.,
2018), CMU-DoG (Zhou et al., 2018b) and Multi-
Doc2Dial (Feng et al., 2021a). The dataset statis-
tics are summarized in Table 1. We first conduct
knowledge selection with our Coref-Diffs method
and then feed the selections and dialogue history
into text generation models to compare the final
responses.
Evaluation metrics. We focused on evaluating
the knowledge selection sub-task for the document-
grounded dialog system, based on the knowledge
and topic selection accuracies, denoted as KL and
TP, respectively. We also explore the knowledge
selection accuracy of all intra-topic data samples,
whose knowledge transitions are within the same
topic, denoted as In-TP. As for evaluating the sub-
task of response generation given the dialog context
and selected knowledge, we calculate the overlap
of the generated response and the ground-truth with
the unigram-F1(uF1) and bigram-F1(bF1).
Baselines. For the two commonly used datasets,
WoW and Holl-E, we split the baselines into
three categories based on their text encoder
types. (i) Non-Pretrained encoder: Trans-
former+MemNet (Dinan et al., 2018) is the
baseline released with the dataset WoW. Dif-
fKS(RNN) (Zheng et al., 2020) incorporates the
knowledge difference feature in knowledge selec-
tion. (ii) BERT encoder: BERT+PoKS, a variant
of PoKS with BERT (Devlin et al., 2019) encoder,
learns knowledge selection by posterior knowledge
distribution. SLKS (Kim et al., 2019) captures

historical knowledge sequence with a latent vari-
able. PIPM (Chen et al., 2020) improves SLKS by
addressing the problem of missing posterior distri-
bution in test phase. CoLV (Zhan et al., 2021a)
includes two collaborative variables for knowl-
edge selection and response generation. Knowl-
edGPT (Zhao et al., 2020) optimizes knowledge
grounded dialog task by the pre-trained BERT
encode and GPT-2 (Radford et al., 2019). (iii)
Passage-level BERT encoder: DIALKI (Wu et al.,
2021) encodes knowledge at passage level to cap-
ture knowledge segment relations as we do in
CorefDiffs. For response generation, given that
the above-mentioned methods adopted different
generators, we uniformly replaced their generators
with a prompt-based generator PrefixTuning (Li
and Liang, 2021) for a fair comparison, thus form-
ing the baselines with "*" in Table 3. For Multi-
Doc2Dial and CMU-DoG, we compare our method
with the current state-of-the-art DPR+RAG (Lewis
et al., 2020b) and DoHA (Prabhumoye et al., 2021),
respectively. The generators used are fine-tuned
BART-large.

4.1 Implementation Details.

The BERT-base models in all our experiments used
the Huggingface Transformers5 (Wolf et al., 2020).
We trained the model with Adam (Kingma and
Ba, 2015) optimizer with initial learning rate 1e-5.
A linear scheduler with a warm-up strategy in 5k
steps was used. The maximum history length l was
empirically set to 4 for WoW, 2 for Holl-E, 3 for
CMU-DoG and 4 for MultiDoc2Dial to achieve
the best performance. The number of the stacked
Res-RGAT was set to 2. It took around 5 and 10
epochs to achieve the reported performance by 4
nvidia V100 GPUs. We will release all the codes
and the hyper-parameters settings for reproduction.

4.2 Automatic Evaluations

Knowledge Selection. The knowledge selection
results on the four datasets are presented in Table 2
and 4. CorefDiffs significantly outperforms all
other methods regardless of the encoders they used.
Compared to the best performance achieved by DI-
ALKI, CorefDiffs improves by 9.5% and 5.9% and
is the first to achieve knowledge accuracy over 40%
on both the WoW Test Seen and Unseen sets. For
Holl-E, CorefDiffs also performs the best, with
gains of at least 7.4% in knowledge selection. For

5https://github.com/huggingface/transformers
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User: Seattle, I have never been to Seattle but I would love to visit. 
Bot: I would too. I read it's the fastest growing city in 2016, with a 3.1 
annual growth rate.  [seattle, 4] 
User: wow, I bet it is really busy and crowded. 
Bot: I believe it said there were over 700,000 residents just in Seattle and 
it is the largest city in Washington also.  [seattle, 2] 
User: I would hate to drive there. I'm assuming people use a lot of public 
transportation.

GD-SKT: You are welcome.  I would recommend taking three medications to help with male pattern hair loss: finasteride, 
dutasteride and minoxidil. 
DialKI: well, I hope you have a great day!  I know that hair loss can be caused by both genetic and environmental factors. 
Gold : The three types of medications that seem to help the most are finasteride, dutasteride, and minoxidil.  I hope this information 
will help you!  [management of hair loss, 2] 

Management of hair loss Hair losswords 

overlap of
The management of hair loss, 
include medications and surgery

Three medications have evidence to 
support their use in male pattern hair loss: 
finasteride, dutasteride and minoxidil.

Hair loss in some people 
causes psychological distress.

The cause of male-pattern hair 
loss is a combination of 
genetics and male hormones..
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User: Hair loss, I’m going bald! ......
Bot: There are surgeries and medications that can help .... 
[management of hair loss, 1] 
User: What is the top option! I need help! 
Bot: Typically, the reasons for hair loss in men has to do 
with genetics and male hormones....  [hair loss, 6] 
User: Thanks for all your help/info today . 

Seattle

With an estimated 
713,700 residents , 
seattle is the largest 
city in both the state 
of Washington...

In july 2016, seattle was 
again the fastest-growing 
major u.s. city, with a 
3.1% annual growth rate

A major gateway for trade with asia, 
seattle is the fourth-largest port in 
north america in terms of container

sent 2sent 4

sent 6

co-ref

co-ref

co-ref

GD-SKT: I'm not sure, but it is a major gateway for trade with Asia and the fourth largest port in north America. 
DialKI: I'm not sure but I do know that it is the most populous city in the United States. 
Gold: me too. I hate waiting in traffic. it's a major trade route with Asia. It has the fourth largest port in north America in terms of 
container shipping. [seattle, 6]

Figure 4: Two generation examples from WoW. The bold words in "[]" indicate the knowledge. For example, [hair
loss, 6] represents the 6-th knowledge sentence in the document with topic hair loss. Our method chose the right
knowledge for both examples compare to DIALKI owing to the well-designed graph structure.

Method WoW (Seen) WoW (Unseen) Holl-E

TMN 22.5 12.2 22.7
DiffKS(RNN) 25.6 18.6 33.5
BERT+PoKS 25.5 14.1 27.6
SLKS 26.8 18.3 29.2
PIPM 27.8 19.7 30.7
CoLV 30.1 18.9 32.7
DukeNet 26.4 19.6 30.0
KnowledGPT 28.0 25.4 -

DIALKI 32.9 35.5 -
CorefDiffs 42.4 41.4 40.9

w/o Diff-Seq 40.8 39.5 39.7
w/o Diff 40.9 40.1 40.1
w/o Res-RGAT 35.5 36.5 39.5

Table 2: The knowledge selection results measured by
accuracy on WoW and Holl-E.

MultiDoc2Dial our method outperforms state-of-
the-art by 8.2% in knowledge selection accuracy.
CMU-DoG has no ground-truth knowledge, so we
only report generation results. The substantial en-
hancements across all datasets strongly suggest that
CorefDiffs has benefited from modeling document
structures and knowledge relations in the grounding
documents with differential dialog flow learning.

Response Generation. Tables 3 and 4 show the re-
sults of response generation on all the four datasets.
We applied PrefixTuning (Li and Liang, 2021) to
generate responses with the corresponding dialog
context and selected knowledge as the input for
WoW and Holl-E, while for MultiDoc2Dial and
CMU-DoG, we followed previous works using

Method WoW (Seen) WoW (Unseen) Holl-E

uF1 bF1 uF1 bF1 uF1 bF1

SLKS(TM+Copy) 19.3 6.8 16.1 4.2 29.2 22.3
DukeNet(TM+Copy) 19.3 6.3 17.1 4.7 30.6 23.1
SLKS* 20.2 7.3 17.5 5.3 - -
DiffKS* 21.5 7.6 20.0 6.3 30.7 23.9
KnowledGPT* 22.0 8.2 20.8 7.4 - -
DIALKI* 22.0 8.0 22.2 8.1 - -

CorefDiffs 25.2 10.7 25.8 10.8 38.4 31.8

Table 3: Response generation results on WoW and Holl-
E. Methods with ‘(TM+Copy)’ and ‘*’ used generator
Transformer + Copy mechanism and PrefixTuning.‘-’ in-
dicates the method didn’t do experiment on the dataset.

BART-Large. The PrefixTuning obtained a compa-
rable performance with fewer learnable parameters
and extrapolated better to unseen topics than fine-
tuning method. Again, CorefDiffs obtains best per-
formance in all generation metrics on four datasets,
which we attribute to the large margins on knowl-
edge selection.
Ablation Study. To study the impact of each of
the modules in CorefDiffs, we conduct three exper-
iments, as shown in the lower part of Table 2. For
w/o Diff-Seq, we remove the Differential Lineariza-
tion. w/o Diff uses the normal knowledge sequence
instead of the shifting sequence. w/o RES-RGAT
removes the Residual Graph Propagation. After
removing RES-RGAT, we observe a steep drop in
knowledge selection accuracy, which proves that
knowledge representations updated by graph prop-
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Method MultiDoc2Dial CMU-DOG

uF1 KL uF1

DoHA - - 22.8
DPR+RAG 33.7 24.9 -
CorefDiffs 39.3 33.1 23.9

Table 4: Experimental Results on MultiDoc2Dial and
CMU-DOG.

agation on Coref-MDG is well aligned with knowl-
edge distribution in next turn. This also shows that
purely relying on local correlations within passage
context (Step I in Figure 3) is not as good as using
higher-level document structures. In addition, w/o
diff-seq also presents lower knowledge selection
accuracy, showing its importance to enhance dialog
flow modeling upon graph propagation. More im-
portantly, by comparing w/o diff-seq and w/o Diff,
we notice that using shifting sequences outperforms
normal ones, thus validating our earlier argument
that shifting features are sharper and more effective
for dialog knowledge flow.

4.3 Case Study

Why does Coref-MDG work on knowledge selec-
tion? To answer this question, we visualize two
typical examples, shown in Figure 4. The dialog
Context rows are dialog histories, and the gener-
ated responses of different methods are listed in
the Response row. We compare our CorefDiffs
with DIALKI and the Gold (ground-truth) response.
The first example performed topic change from
“hair loss” to “management of hair loss”. CorefD-
iffs chose the right knowledge topic, “management
of hair loss”, while DIALKI repeated the knowl-
edge mentioned in the earlier conversation turn.
The reason is that CorefDiffs was able to do so
is because it had referred to the word_overlap
connection between “hair loss” and “management
of hair loss”, whereas DIALKI did not consider
such inter-topic relations. For the second exam-
ple, the knowledge transition is intra-topic (knowl-
edge in consecutive turns belonging to the same
topic/document). Our method successfully predicts
the right knowledge due to the co-reference rela-
tion between these knowledge sentences within the
“seattle” document, whereas the response generated
by DIALKI — even with passage-level knowledge
correlations encoded — missed the long depen-
dency from the second to the sixth sentence.

4.4 Graph Analysis

To study effects of the different type of relations
in Coref-MDG on topic/knowledge selection ac-
curacies. We did more experiments on WoW. We
craft 3 Coref-MDG variants lie in three categories
for relations between topics. (1) w/o TP: remov-
ing all topic edges; (2) w/o TP overlap: removing
the word overlap edges; (3) w/o TP wikigraph: re-
moving the commonsense edges. Another three
variants for exploring the relations between knowl-
edge vertices are as follows: (4) w/o KG: remov-
ing all knowledge edges (that is co-reference link);
(5) +KG common entity: applying entity edges be-
tween knowledge instead; (6) +KG partial order:
employing partial order edges between knowledge.
We also remove the sentence order edges between
topic and knowledge vertices and formed a variant
(7) w/o TP-KG. The results of the above experi-
ments are listed in Table 5, from which we get the
following conclusions:

(i) Coref-MDG performs the best in knowledge
selection compared to other graph structures.
Removing or replacing edge types in Coref-MDG,
such as the edges between topic vertices (Exp. 1-3),
knowledge vertices (Exp. 4-6), or topic and knowl-
edge vertices (Exp. 7), can cause a drop in topic
or knowledge selection both on Seen or Unseen
settings. Moreover, sometimes using other kind of
edge leads to worse results than their absence. For
example, in Exp. 4 and 5, w/o KG performs better
than + KG common entity in Unseen.

(ii) Topic and knowledge selection accuracies
are affected by their relevant relations in Coref-
MDG. In Exp. 1 and 7, without topic edges or
topic-knowledge edges, the model achieves lowest
TP. In Exp. 4-7, model achieves lower KL without
suitable knowledge relations.

(iii) Topic and Knowledge relations also facili-
tate each other. In Exp. 1 and 4 even removing
topic relation or knowledge relations, the model
still achieves better TP and KL compared to DI-
ALKI (no graph relation used).

(iv) Knowledge relations improve intra-topic
knowledge selection. As shown by results in 4th
and 7th columns, by comparing In-TP results in
Exp. 1-3 and Exp. 4-6, after removing knowledge
edges, the In-TP drops a lot, thus we conclude
that relations between knowledge enhance the intra-
topic knowledge selection.



479

Method WoW Seen WoW Unseen

KL TP In-TP KL TP In-TP

DIALKI 32.9 70.0 42.3 35.5 71.6 43.5
CorefDiffs 42.4 76.1 51.1 41.4 77.7 49.2

1. w/o TP 42.1 74.0 50.6 39.8 75.2 47.2
2. w/o TP overlap 42.4 75.9 51.2 40.9 77.7 48.1
3. w/o TP wikigraph 42.3 75.9 50.9 41.1 77.5 48.8

4. w/o KG 35.4 75.7 44.6 37.1 77.2 46.1
5. + KG common entity 35.4 74.6 44.4 36.4 75.9 43.8
6. + KG partial order 36.6 75.9 45.7 37.1 76.8 45.5

7. w/o TP-KG 40.5 73.5 49.5 38.3 74.5 45.7

Table 5: Graph Comparisons in selection accuracy.

5 Conclusion

We show the significance of utilizing the docu-
ment’s semantic structures and relations for man-
aging dialog flow. We embody these relations
in our novel multi-document graph Coref-MDG
which models co-referential knowledge mention
links and inter-document relations. Our analysis
of Coref-MDG yields insights of how the differ-
ence among intra- or inter-document relations af-
fect the final topic and knowledge selection ac-
curacy. For example, we find that coreference
links and topic-knowledge sentence order relations
are critical relations. We then build dynamically-
sensitive dialog flows via our CorefDiffs method,
which integrates the modeling of dialog difference
flow with the prior knowledge represented in Coref-
MDG. CorefDiffs demonstrates that it is possible to
seamlessly integrate static graph structures with dy-
namic dialog-specific flows, improving document-
grounded conversations.

Ethical Impact

Document-grounded dialog technology has broad
application prospects in open-domain dialog, emo-
tional escort robots, intelligent assistants, etc. This
work focuses on knowledge selection which plays a
significant role in dialog management of multi-turn
dialog for document-grounded conversations. All
datasets we used in this work were privacy filtered
and content moderated by the dataset authors (Di-
nan et al., 2019; Moghe et al., 2018). However,
advanced dialog knowledge selection techniques
may also enable bots to select harmful content on
the Internet and generate inappropriate or biased
responses to users. Future work should take this
into consideration.
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A Implementation Details

We set the maximum lengths of model input to
512, which is also the longest input limit for the
BERT model, in order to fit the longer passage text
as much as possible on both datasets. We employ
a Linear layer to transform the output features of
BERT from 768 to 320 to reduce memory usage.
The edge embedding size is set to 64. The hidden
size and headers of Res-RGAT are 1024 and 8 re-
spectively while the alpha value of Graph Attention
Network is 0.2. We utilize a unidirectional stacked
GRU model for Differential Sequential Learning,
the number of GRU layers is 2.

For response generation, we apply PrefixTun-
ning (Li and Liang, 2021) on BART (Lewis et al.,
2020a) large model to learn the responses gener-
ation model based on the knowledge selection re-
sults from the previous stage. We use the prefix
length 200 and the hidden dimension of 800 for
all the methods using PrefixTuning generator. The
PrefixTuning generator takes about 4 hours and 30
epoch to become converged during training on 4
V100 32G GPUs, which is much faster and more
resource saving than fine-tuning BART large.

B Dataset Processing Details

WoW. There are more than 130k different docu-
ments from Wikipedia in WoW training set. We
keep 350 high-frequency relations from the Wiki
knowledge graph, covering these 130k documents.
The top-10 wiki relations with corresponding fre-
quency are shown as follows:

1. (’subclass of’, 27015)

2. (’facet of’, 11381)

3. (’sport’, 10646)

4. (’performer’, 9482)

5. (’part of’, 6892)

6. (’manufacturer’, 5742)

7. (’instance of’, 5551)

8. (’history of topic’, 5517)

9. (’has part’, 5445)

10. (’follows’, 5077)

As shown in Table 6, for topic relations, we
found the word_overlap edges is denser than
the commonsense edges from wikiData, giving
the average edge number of 8.11 and 2.89, re-
spectively. While for knowledge relations, the
coreference_link has much less average
number of relations in one sample than other
two types relations, which again proves that
coreference_linkwith more accurate knowl-
edge relations lead to better knowledge selection
results without introducing wrong structures infor-
mation to CorefDiffs framework.

Topic Relations Knowledge relations
WordOverlap WikiGraph Partial EntityLink Coreference

Freq 8.11 2.89 61.18 87.52 15.90

Table 6: Average number of different kinds of relations
in one sample on the WoW training set.

Holl-E. Different from WoW, each sample of Holl-
E has only one topic, which is the movie in this
session of conversation. There are four types of
information for each movie in Holl-E, which are
plots, comments, reviews, and table information.
So we simply divide all the knowledge sentences of
each movie into four topics. As the absence of com-
mon sense relations of such topics in Holl-E, we
count the co-occurrence relationship of all topics
in the training set as the relations between topics
in Holl-E. The relations between knowledge are as
same as the WoW, using coreference relations in
passage text. The relations between knowledge and
topics are sentence order of knowledge sentence in
the original text, which is also used in WoW. CMU-
DoG. CMU-DoG is a document-grounded conver-
sation dataset about movie, which is the same as
Holl-E. The difference is that CMU-DoG includes
only one grounding document(one topic) at each
dialog turn. The relations of topics is absent as
there is only one topic in grounding document. The
relations between knowledge are as same as the
WoW and Holl-E with coreference relations. The
relations between knowledge and topics are sen-
tence order of knowledge sentence in the passage,
which is also consistent with WoW and Holl-E. On
the other hand, CMU-DoG didn’t contain the gold
knowledge of knowledge selection task. We adopt
unigram F1 score as similarity function, selecting
the knowledge closest to the ground-truth response
as gold knowledge to train the selector model.
MultiDoc2Dial. MultiDoc2Dial includes multiple
grounding documents at each dialog turn. We con-
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struct the graph following the steps of Holl-E. How-
ever, MultiDoc2Dial introduces a span prediction
task to locate knowledge set in the original docu-
ment instead of knowledge selection. But that’s ok,
it easy for our framework to transfer downstream
task by using two independent classifier to predict
both start knowledge segment and end knowledge
segment instead of one classifier for knowledge
selection. Simultaneously, we replace the metric
from knowledge accuracy to knowledge EM, which
is used in MultiDoc2Dial. For convenience, we
still use KL in Table 4 to denote the EM metric in
MultiDoc2Dial.

C Analysis on Partial Order Edge

For partial order relations, we explored the effects
of different hops. Hop-k partial order relation
means each knowledge vertex is connected with
k knowledge vertices behind according to the sen-
tence order. As shown in Fig 5, hop-2 partial rela-
tion performed the best. A hop that was too large or
too small could cause information loss or introduce
many erroneous connections.
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36.3

36.7

37.1

hop1 hop2 hop3 hop4 hop5

Seen Acc Unseen Acc

Figure 5: Knowledge accuracy for partial order with
different hops.


