@inproceedings{mondal-etal-2022-global,
title = "Global Readiness of Language Technology for Healthcare: What Would It Take to Combat the Next Pandemic?",
author = "Mondal, Ishani and
Ahuja, Kabir and
Jain, Mohit and
O{'}Neill, Jacki and
Bali, Kalika and
Choudhury, Monojit",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.381",
pages = "4320--4335",
abstract = "The COVID-19 pandemic has brought out both the best and worst of language technology (LT). On one hand, conversational agents for information dissemination and basic diagnosis have seen widespread use, and arguably, had an important role in fighting against the pandemic. On the other hand, it has also become clear that such technologies are readily available for a handful of languages, and the vast majority of the global south is completely bereft of these benefits. What is the state of LT, especially conversational agents, for healthcare across the world{'}s languages? And, what would it take to ensure global readiness of LT before the next pandemic? In this paper, we try to answer these questions through survey of existing literature and resources, as well as through a rapid chatbot building exercise for 15 Asian and African languages with varying amount of resource-availability. The study confirms the pitiful state of LT even for languages with large speaker bases, such as Sinhala and Hausa, and identifies the gaps that could help us prioritize research and investment strategies in LT for healthcare.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mondal-etal-2022-global">
<titleInfo>
<title>Global Readiness of Language Technology for Healthcare: What Would It Take to Combat the Next Pandemic?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ishani</namePart>
<namePart type="family">Mondal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kabir</namePart>
<namePart type="family">Ahuja</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacki</namePart>
<namePart type="family">O’Neill</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Monojit</namePart>
<namePart type="family">Choudhury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The COVID-19 pandemic has brought out both the best and worst of language technology (LT). On one hand, conversational agents for information dissemination and basic diagnosis have seen widespread use, and arguably, had an important role in fighting against the pandemic. On the other hand, it has also become clear that such technologies are readily available for a handful of languages, and the vast majority of the global south is completely bereft of these benefits. What is the state of LT, especially conversational agents, for healthcare across the world’s languages? And, what would it take to ensure global readiness of LT before the next pandemic? In this paper, we try to answer these questions through survey of existing literature and resources, as well as through a rapid chatbot building exercise for 15 Asian and African languages with varying amount of resource-availability. The study confirms the pitiful state of LT even for languages with large speaker bases, such as Sinhala and Hausa, and identifies the gaps that could help us prioritize research and investment strategies in LT for healthcare.</abstract>
<identifier type="citekey">mondal-etal-2022-global</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.381</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>4320</start>
<end>4335</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Global Readiness of Language Technology for Healthcare: What Would It Take to Combat the Next Pandemic?
%A Mondal, Ishani
%A Ahuja, Kabir
%A Jain, Mohit
%A O’Neill, Jacki
%A Bali, Kalika
%A Choudhury, Monojit
%S Proceedings of the 29th International Conference on Computational Linguistics
%D 2022
%8 October
%I International Committee on Computational Linguistics
%C Gyeongju, Republic of Korea
%F mondal-etal-2022-global
%X The COVID-19 pandemic has brought out both the best and worst of language technology (LT). On one hand, conversational agents for information dissemination and basic diagnosis have seen widespread use, and arguably, had an important role in fighting against the pandemic. On the other hand, it has also become clear that such technologies are readily available for a handful of languages, and the vast majority of the global south is completely bereft of these benefits. What is the state of LT, especially conversational agents, for healthcare across the world’s languages? And, what would it take to ensure global readiness of LT before the next pandemic? In this paper, we try to answer these questions through survey of existing literature and resources, as well as through a rapid chatbot building exercise for 15 Asian and African languages with varying amount of resource-availability. The study confirms the pitiful state of LT even for languages with large speaker bases, such as Sinhala and Hausa, and identifies the gaps that could help us prioritize research and investment strategies in LT for healthcare.
%U https://aclanthology.org/2022.coling-1.381
%P 4320-4335
Markdown (Informal)
[Global Readiness of Language Technology for Healthcare: What Would It Take to Combat the Next Pandemic?](https://aclanthology.org/2022.coling-1.381) (Mondal et al., COLING 2022)
ACL