@inproceedings{xing-etal-2022-taking,
title = "Taking Actions Separately: A Bidirectionally-Adaptive Transfer Learning Method for Low-Resource Neural Machine Translation",
author = "Xing, Xiaolin and
Hong, Yu and
Xu, Minhan and
Yao, Jianmin and
Zhou, Guodong",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.395",
pages = "4481--4491",
abstract = "Training Neural Machine Translation (NMT) models suffers from sparse parallel data, in the infrequent translation scenarios towards low-resource source languages. The existing solutions primarily concentrate on the utilization of Parent-Child (PC) transfer learning. It transfers well-trained NMT models on high-resource languages (namely Parent NMT) to low-resource languages, so as to produce Child NMT models by fine-tuning. It has been carefully demonstrated that a variety of PC variants yield significant improvements for low-resource NMT. In this paper, we intend to enhance PC-based NMT by a bidirectionally-adaptive learning strategy. Specifically, we divide inner constituents (6 transformers) of Parent encoder into two {``}teams{''}, i.e., T1 and T2. During representation learning, T1 learns to encode low-resource languages conditioned on bilingual shareable latent space. Generative adversarial network and masked language modeling are used for space-shareable encoding. On the other hand, T2 is straightforwardly transferred to low-resource languages, and fine-tuned together with T1 for low-resource translation. Briefly, T1 and T2 take actions separately for different goals. The former aims to adapt to characteristics of low-resource languages during encoding, while the latter adapts to translation experiences learned from high-resource languages. We experiment on benchmark corpora SETIMES, conducting low-resource NMT for Albanian (Sq), Macedonian (Mk), Croatian (Hr) and Romanian (Ro). Experimental results show that our method yields substantial improvements, which allows the NMT performance to reach BLEU4-scores of 62.24{\%}, 56.93{\%}, 50.53{\%} and 54.65{\%} for Sq, Mk, Hr and Ro, respectively.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xing-etal-2022-taking">
<titleInfo>
<title>Taking Actions Separately: A Bidirectionally-Adaptive Transfer Learning Method for Low-Resource Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaolin</namePart>
<namePart type="family">Xing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Hong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Minhan</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jianmin</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guodong</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Training Neural Machine Translation (NMT) models suffers from sparse parallel data, in the infrequent translation scenarios towards low-resource source languages. The existing solutions primarily concentrate on the utilization of Parent-Child (PC) transfer learning. It transfers well-trained NMT models on high-resource languages (namely Parent NMT) to low-resource languages, so as to produce Child NMT models by fine-tuning. It has been carefully demonstrated that a variety of PC variants yield significant improvements for low-resource NMT. In this paper, we intend to enhance PC-based NMT by a bidirectionally-adaptive learning strategy. Specifically, we divide inner constituents (6 transformers) of Parent encoder into two “teams”, i.e., T1 and T2. During representation learning, T1 learns to encode low-resource languages conditioned on bilingual shareable latent space. Generative adversarial network and masked language modeling are used for space-shareable encoding. On the other hand, T2 is straightforwardly transferred to low-resource languages, and fine-tuned together with T1 for low-resource translation. Briefly, T1 and T2 take actions separately for different goals. The former aims to adapt to characteristics of low-resource languages during encoding, while the latter adapts to translation experiences learned from high-resource languages. We experiment on benchmark corpora SETIMES, conducting low-resource NMT for Albanian (Sq), Macedonian (Mk), Croatian (Hr) and Romanian (Ro). Experimental results show that our method yields substantial improvements, which allows the NMT performance to reach BLEU4-scores of 62.24%, 56.93%, 50.53% and 54.65% for Sq, Mk, Hr and Ro, respectively.</abstract>
<identifier type="citekey">xing-etal-2022-taking</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.395</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>4481</start>
<end>4491</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Taking Actions Separately: A Bidirectionally-Adaptive Transfer Learning Method for Low-Resource Neural Machine Translation
%A Xing, Xiaolin
%A Hong, Yu
%A Xu, Minhan
%A Yao, Jianmin
%A Zhou, Guodong
%S Proceedings of the 29th International Conference on Computational Linguistics
%D 2022
%8 October
%I International Committee on Computational Linguistics
%C Gyeongju, Republic of Korea
%F xing-etal-2022-taking
%X Training Neural Machine Translation (NMT) models suffers from sparse parallel data, in the infrequent translation scenarios towards low-resource source languages. The existing solutions primarily concentrate on the utilization of Parent-Child (PC) transfer learning. It transfers well-trained NMT models on high-resource languages (namely Parent NMT) to low-resource languages, so as to produce Child NMT models by fine-tuning. It has been carefully demonstrated that a variety of PC variants yield significant improvements for low-resource NMT. In this paper, we intend to enhance PC-based NMT by a bidirectionally-adaptive learning strategy. Specifically, we divide inner constituents (6 transformers) of Parent encoder into two “teams”, i.e., T1 and T2. During representation learning, T1 learns to encode low-resource languages conditioned on bilingual shareable latent space. Generative adversarial network and masked language modeling are used for space-shareable encoding. On the other hand, T2 is straightforwardly transferred to low-resource languages, and fine-tuned together with T1 for low-resource translation. Briefly, T1 and T2 take actions separately for different goals. The former aims to adapt to characteristics of low-resource languages during encoding, while the latter adapts to translation experiences learned from high-resource languages. We experiment on benchmark corpora SETIMES, conducting low-resource NMT for Albanian (Sq), Macedonian (Mk), Croatian (Hr) and Romanian (Ro). Experimental results show that our method yields substantial improvements, which allows the NMT performance to reach BLEU4-scores of 62.24%, 56.93%, 50.53% and 54.65% for Sq, Mk, Hr and Ro, respectively.
%U https://aclanthology.org/2022.coling-1.395
%P 4481-4491
Markdown (Informal)
[Taking Actions Separately: A Bidirectionally-Adaptive Transfer Learning Method for Low-Resource Neural Machine Translation](https://aclanthology.org/2022.coling-1.395) (Xing et al., COLING 2022)
ACL