A Weak Supervision Approach for Predicting Difficulty of Technical Interview Questions
Arpita Kundu, Subhasish Ghosh, Pratik Saini, Tapas Nayak, Indrajit Bhattacharya
Abstract
Predicting difficulty of questions is crucial for technical interviews. However, such questions are long-form and more open-ended than factoid and multiple choice questions explored so far for question difficulty prediction. Existing models also require large volumes of candidate response data for training. We study weak-supervision and use unsupervised algorithms for both question generation and difficulty prediction. We create a dataset of interview questions with difficulty scores for deep learning and use it to evaluate SOTA models for question difficulty prediction trained using weak supervision. Our analysis brings out the task’s difficulty as well as the promise of weak supervision for it.- Anthology ID:
- 2022.coling-1.400
- Volume:
- Proceedings of the 29th International Conference on Computational Linguistics
- Month:
- October
- Year:
- 2022
- Address:
- Gyeongju, Republic of Korea
- Editors:
- Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, Seung-Hoon Na
- Venue:
- COLING
- SIG:
- Publisher:
- International Committee on Computational Linguistics
- Note:
- Pages:
- 4537–4543
- Language:
- URL:
- https://aclanthology.org/2022.coling-1.400
- DOI:
- Bibkey:
- Cite (ACL):
- Arpita Kundu, Subhasish Ghosh, Pratik Saini, Tapas Nayak, and Indrajit Bhattacharya. 2022. A Weak Supervision Approach for Predicting Difficulty of Technical Interview Questions. In Proceedings of the 29th International Conference on Computational Linguistics, pages 4537–4543, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
- Cite (Informal):
- A Weak Supervision Approach for Predicting Difficulty of Technical Interview Questions (Kundu et al., COLING 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.coling-1.400.pdf
Export citation
@inproceedings{kundu-etal-2022-weak, title = "A Weak Supervision Approach for Predicting Difficulty of Technical Interview Questions", author = "Kundu, Arpita and Ghosh, Subhasish and Saini, Pratik and Nayak, Tapas and Bhattacharya, Indrajit", editor = "Calzolari, Nicoletta and Huang, Chu-Ren and Kim, Hansaem and Pustejovsky, James and Wanner, Leo and Choi, Key-Sun and Ryu, Pum-Mo and Chen, Hsin-Hsi and Donatelli, Lucia and Ji, Heng and Kurohashi, Sadao and Paggio, Patrizia and Xue, Nianwen and Kim, Seokhwan and Hahm, Younggyun and He, Zhong and Lee, Tony Kyungil and Santus, Enrico and Bond, Francis and Na, Seung-Hoon", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics", url = "https://aclanthology.org/2022.coling-1.400", pages = "4537--4543", abstract = "Predicting difficulty of questions is crucial for technical interviews. However, such questions are long-form and more open-ended than factoid and multiple choice questions explored so far for question difficulty prediction. Existing models also require large volumes of candidate response data for training. We study weak-supervision and use unsupervised algorithms for both question generation and difficulty prediction. We create a dataset of interview questions with difficulty scores for deep learning and use it to evaluate SOTA models for question difficulty prediction trained using weak supervision. Our analysis brings out the task{'}s difficulty as well as the promise of weak supervision for it.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="kundu-etal-2022-weak"> <titleInfo> <title>A Weak Supervision Approach for Predicting Difficulty of Technical Interview Questions</title> </titleInfo> <name type="personal"> <namePart type="given">Arpita</namePart> <namePart type="family">Kundu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Subhasish</namePart> <namePart type="family">Ghosh</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pratik</namePart> <namePart type="family">Saini</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tapas</namePart> <namePart type="family">Nayak</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Indrajit</namePart> <namePart type="family">Bhattacharya</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2022-10</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 29th International Conference on Computational Linguistics</title> </titleInfo> <name type="personal"> <namePart type="given">Nicoletta</namePart> <namePart type="family">Calzolari</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chu-Ren</namePart> <namePart type="family">Huang</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hansaem</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">James</namePart> <namePart type="family">Pustejovsky</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Leo</namePart> <namePart type="family">Wanner</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Key-Sun</namePart> <namePart type="family">Choi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pum-Mo</namePart> <namePart type="family">Ryu</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hsin-Hsi</namePart> <namePart type="family">Chen</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lucia</namePart> <namePart type="family">Donatelli</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Heng</namePart> <namePart type="family">Ji</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sadao</namePart> <namePart type="family">Kurohashi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Patrizia</namePart> <namePart type="family">Paggio</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nianwen</namePart> <namePart type="family">Xue</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seokhwan</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Younggyun</namePart> <namePart type="family">Hahm</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhong</namePart> <namePart type="family">He</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tony</namePart> <namePart type="given">Kyungil</namePart> <namePart type="family">Lee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Enrico</namePart> <namePart type="family">Santus</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Francis</namePart> <namePart type="family">Bond</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seung-Hoon</namePart> <namePart type="family">Na</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>International Committee on Computational Linguistics</publisher> <place> <placeTerm type="text">Gyeongju, Republic of Korea</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>Predicting difficulty of questions is crucial for technical interviews. However, such questions are long-form and more open-ended than factoid and multiple choice questions explored so far for question difficulty prediction. Existing models also require large volumes of candidate response data for training. We study weak-supervision and use unsupervised algorithms for both question generation and difficulty prediction. We create a dataset of interview questions with difficulty scores for deep learning and use it to evaluate SOTA models for question difficulty prediction trained using weak supervision. Our analysis brings out the task’s difficulty as well as the promise of weak supervision for it.</abstract> <identifier type="citekey">kundu-etal-2022-weak</identifier> <location> <url>https://aclanthology.org/2022.coling-1.400</url> </location> <part> <date>2022-10</date> <extent unit="page"> <start>4537</start> <end>4543</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T A Weak Supervision Approach for Predicting Difficulty of Technical Interview Questions %A Kundu, Arpita %A Ghosh, Subhasish %A Saini, Pratik %A Nayak, Tapas %A Bhattacharya, Indrajit %Y Calzolari, Nicoletta %Y Huang, Chu-Ren %Y Kim, Hansaem %Y Pustejovsky, James %Y Wanner, Leo %Y Choi, Key-Sun %Y Ryu, Pum-Mo %Y Chen, Hsin-Hsi %Y Donatelli, Lucia %Y Ji, Heng %Y Kurohashi, Sadao %Y Paggio, Patrizia %Y Xue, Nianwen %Y Kim, Seokhwan %Y Hahm, Younggyun %Y He, Zhong %Y Lee, Tony Kyungil %Y Santus, Enrico %Y Bond, Francis %Y Na, Seung-Hoon %S Proceedings of the 29th International Conference on Computational Linguistics %D 2022 %8 October %I International Committee on Computational Linguistics %C Gyeongju, Republic of Korea %F kundu-etal-2022-weak %X Predicting difficulty of questions is crucial for technical interviews. However, such questions are long-form and more open-ended than factoid and multiple choice questions explored so far for question difficulty prediction. Existing models also require large volumes of candidate response data for training. We study weak-supervision and use unsupervised algorithms for both question generation and difficulty prediction. We create a dataset of interview questions with difficulty scores for deep learning and use it to evaluate SOTA models for question difficulty prediction trained using weak supervision. Our analysis brings out the task’s difficulty as well as the promise of weak supervision for it. %U https://aclanthology.org/2022.coling-1.400 %P 4537-4543
Markdown (Informal)
[A Weak Supervision Approach for Predicting Difficulty of Technical Interview Questions](https://aclanthology.org/2022.coling-1.400) (Kundu et al., COLING 2022)
- A Weak Supervision Approach for Predicting Difficulty of Technical Interview Questions (Kundu et al., COLING 2022)
ACL
- Arpita Kundu, Subhasish Ghosh, Pratik Saini, Tapas Nayak, and Indrajit Bhattacharya. 2022. A Weak Supervision Approach for Predicting Difficulty of Technical Interview Questions. In Proceedings of the 29th International Conference on Computational Linguistics, pages 4537–4543, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.