SHAP-Based Explanation Methods: A Review for NLP Interpretability
Edoardo Mosca, Ferenc Szigeti, Stella Tragianni, Daniel Gallagher, Georg Groh
Abstract
Model explanations are crucial for the transparent, safe, and trustworthy deployment of machine learning models. The SHapley Additive exPlanations (SHAP) framework is considered by many to be a gold standard for local explanations thanks to its solid theoretical background and general applicability. In the years following its publication, several variants appeared in the literature—presenting adaptations in the core assumptions and target applications. In this work, we review all relevant SHAP-based interpretability approaches available to date and provide instructive examples as well as recommendations regarding their applicability to NLP use cases.- Anthology ID:
- 2022.coling-1.406
- Volume:
- Proceedings of the 29th International Conference on Computational Linguistics
- Month:
- October
- Year:
- 2022
- Address:
- Gyeongju, Republic of Korea
- Editors:
- Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, Seung-Hoon Na
- Venue:
- COLING
- SIG:
- Publisher:
- International Committee on Computational Linguistics
- Note:
- Pages:
- 4593–4603
- Language:
- URL:
- https://aclanthology.org/2022.coling-1.406
- DOI:
- Bibkey:
- Cite (ACL):
- Edoardo Mosca, Ferenc Szigeti, Stella Tragianni, Daniel Gallagher, and Georg Groh. 2022. SHAP-Based Explanation Methods: A Review for NLP Interpretability. In Proceedings of the 29th International Conference on Computational Linguistics, pages 4593–4603, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
- Cite (Informal):
- SHAP-Based Explanation Methods: A Review for NLP Interpretability (Mosca et al., COLING 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.coling-1.406.pdf
Export citation
@inproceedings{mosca-etal-2022-shap, title = "{SHAP}-Based Explanation Methods: A Review for {NLP} Interpretability", author = "Mosca, Edoardo and Szigeti, Ferenc and Tragianni, Stella and Gallagher, Daniel and Groh, Georg", editor = "Calzolari, Nicoletta and Huang, Chu-Ren and Kim, Hansaem and Pustejovsky, James and Wanner, Leo and Choi, Key-Sun and Ryu, Pum-Mo and Chen, Hsin-Hsi and Donatelli, Lucia and Ji, Heng and Kurohashi, Sadao and Paggio, Patrizia and Xue, Nianwen and Kim, Seokhwan and Hahm, Younggyun and He, Zhong and Lee, Tony Kyungil and Santus, Enrico and Bond, Francis and Na, Seung-Hoon", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics", url = "https://aclanthology.org/2022.coling-1.406", pages = "4593--4603", abstract = "Model explanations are crucial for the transparent, safe, and trustworthy deployment of machine learning models. The \textit{SHapley Additive exPlanations} (SHAP) framework is considered by many to be a gold standard for local explanations thanks to its solid theoretical background and general applicability. In the years following its publication, several variants appeared in the literature{---}presenting adaptations in the core assumptions and target applications. In this work, we review all relevant SHAP-based interpretability approaches available to date and provide instructive examples as well as recommendations regarding their applicability to NLP use cases.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="mosca-etal-2022-shap"> <titleInfo> <title>SHAP-Based Explanation Methods: A Review for NLP Interpretability</title> </titleInfo> <name type="personal"> <namePart type="given">Edoardo</namePart> <namePart type="family">Mosca</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ferenc</namePart> <namePart type="family">Szigeti</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Stella</namePart> <namePart type="family">Tragianni</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Daniel</namePart> <namePart type="family">Gallagher</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Georg</namePart> <namePart type="family">Groh</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2022-10</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 29th International Conference on Computational Linguistics</title> </titleInfo> <name type="personal"> <namePart type="given">Nicoletta</namePart> <namePart type="family">Calzolari</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chu-Ren</namePart> <namePart type="family">Huang</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hansaem</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">James</namePart> <namePart type="family">Pustejovsky</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Leo</namePart> <namePart type="family">Wanner</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Key-Sun</namePart> <namePart type="family">Choi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pum-Mo</namePart> <namePart type="family">Ryu</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hsin-Hsi</namePart> <namePart type="family">Chen</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lucia</namePart> <namePart type="family">Donatelli</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Heng</namePart> <namePart type="family">Ji</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sadao</namePart> <namePart type="family">Kurohashi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Patrizia</namePart> <namePart type="family">Paggio</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nianwen</namePart> <namePart type="family">Xue</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seokhwan</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Younggyun</namePart> <namePart type="family">Hahm</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhong</namePart> <namePart type="family">He</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tony</namePart> <namePart type="given">Kyungil</namePart> <namePart type="family">Lee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Enrico</namePart> <namePart type="family">Santus</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Francis</namePart> <namePart type="family">Bond</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seung-Hoon</namePart> <namePart type="family">Na</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>International Committee on Computational Linguistics</publisher> <place> <placeTerm type="text">Gyeongju, Republic of Korea</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>Model explanations are crucial for the transparent, safe, and trustworthy deployment of machine learning models. The SHapley Additive exPlanations (SHAP) framework is considered by many to be a gold standard for local explanations thanks to its solid theoretical background and general applicability. In the years following its publication, several variants appeared in the literature—presenting adaptations in the core assumptions and target applications. In this work, we review all relevant SHAP-based interpretability approaches available to date and provide instructive examples as well as recommendations regarding their applicability to NLP use cases.</abstract> <identifier type="citekey">mosca-etal-2022-shap</identifier> <location> <url>https://aclanthology.org/2022.coling-1.406</url> </location> <part> <date>2022-10</date> <extent unit="page"> <start>4593</start> <end>4603</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T SHAP-Based Explanation Methods: A Review for NLP Interpretability %A Mosca, Edoardo %A Szigeti, Ferenc %A Tragianni, Stella %A Gallagher, Daniel %A Groh, Georg %Y Calzolari, Nicoletta %Y Huang, Chu-Ren %Y Kim, Hansaem %Y Pustejovsky, James %Y Wanner, Leo %Y Choi, Key-Sun %Y Ryu, Pum-Mo %Y Chen, Hsin-Hsi %Y Donatelli, Lucia %Y Ji, Heng %Y Kurohashi, Sadao %Y Paggio, Patrizia %Y Xue, Nianwen %Y Kim, Seokhwan %Y Hahm, Younggyun %Y He, Zhong %Y Lee, Tony Kyungil %Y Santus, Enrico %Y Bond, Francis %Y Na, Seung-Hoon %S Proceedings of the 29th International Conference on Computational Linguistics %D 2022 %8 October %I International Committee on Computational Linguistics %C Gyeongju, Republic of Korea %F mosca-etal-2022-shap %X Model explanations are crucial for the transparent, safe, and trustworthy deployment of machine learning models. The SHapley Additive exPlanations (SHAP) framework is considered by many to be a gold standard for local explanations thanks to its solid theoretical background and general applicability. In the years following its publication, several variants appeared in the literature—presenting adaptations in the core assumptions and target applications. In this work, we review all relevant SHAP-based interpretability approaches available to date and provide instructive examples as well as recommendations regarding their applicability to NLP use cases. %U https://aclanthology.org/2022.coling-1.406 %P 4593-4603
Markdown (Informal)
[SHAP-Based Explanation Methods: A Review for NLP Interpretability](https://aclanthology.org/2022.coling-1.406) (Mosca et al., COLING 2022)
- SHAP-Based Explanation Methods: A Review for NLP Interpretability (Mosca et al., COLING 2022)
ACL
- Edoardo Mosca, Ferenc Szigeti, Stella Tragianni, Daniel Gallagher, and Georg Groh. 2022. SHAP-Based Explanation Methods: A Review for NLP Interpretability. In Proceedings of the 29th International Conference on Computational Linguistics, pages 4593–4603, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.