@inproceedings{qu-watanabe-2022-adapting,
title = "Adapting to Non-Centered Languages for Zero-shot Multilingual Translation",
author = "Qu, Zhi and
Watanabe, Taro",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.467",
pages = "5251--5265",
abstract = "Multilingual neural machine translation can translate unseen language pairs during training, i.e. zero-shot translation. However, the zero-shot translation is always unstable. Although prior works attributed the instability to the domination of central language, e.g. English, we supplement this viewpoint with the strict dependence of non-centered languages. In this work, we propose a simple, lightweight yet effective language-specific modeling method by adapting to non-centered languages and combining the shared information and the language-specific information to counteract the instability of zero-shot translation. Experiments with Transformer on IWSLT17, Europarl, TED talks, and OPUS-100 datasets show that our method not only performs better than strong baselines in centered data conditions but also can easily fit non-centered data conditions. By further investigating the layer attribution, we show that our proposed method can disentangle the coupled representation in the correct direction.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qu-watanabe-2022-adapting">
<titleInfo>
<title>Adapting to Non-Centered Languages for Zero-shot Multilingual Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhi</namePart>
<namePart type="family">Qu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Taro</namePart>
<namePart type="family">Watanabe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multilingual neural machine translation can translate unseen language pairs during training, i.e. zero-shot translation. However, the zero-shot translation is always unstable. Although prior works attributed the instability to the domination of central language, e.g. English, we supplement this viewpoint with the strict dependence of non-centered languages. In this work, we propose a simple, lightweight yet effective language-specific modeling method by adapting to non-centered languages and combining the shared information and the language-specific information to counteract the instability of zero-shot translation. Experiments with Transformer on IWSLT17, Europarl, TED talks, and OPUS-100 datasets show that our method not only performs better than strong baselines in centered data conditions but also can easily fit non-centered data conditions. By further investigating the layer attribution, we show that our proposed method can disentangle the coupled representation in the correct direction.</abstract>
<identifier type="citekey">qu-watanabe-2022-adapting</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.467</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>5251</start>
<end>5265</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adapting to Non-Centered Languages for Zero-shot Multilingual Translation
%A Qu, Zhi
%A Watanabe, Taro
%S Proceedings of the 29th International Conference on Computational Linguistics
%D 2022
%8 October
%I International Committee on Computational Linguistics
%C Gyeongju, Republic of Korea
%F qu-watanabe-2022-adapting
%X Multilingual neural machine translation can translate unseen language pairs during training, i.e. zero-shot translation. However, the zero-shot translation is always unstable. Although prior works attributed the instability to the domination of central language, e.g. English, we supplement this viewpoint with the strict dependence of non-centered languages. In this work, we propose a simple, lightweight yet effective language-specific modeling method by adapting to non-centered languages and combining the shared information and the language-specific information to counteract the instability of zero-shot translation. Experiments with Transformer on IWSLT17, Europarl, TED talks, and OPUS-100 datasets show that our method not only performs better than strong baselines in centered data conditions but also can easily fit non-centered data conditions. By further investigating the layer attribution, we show that our proposed method can disentangle the coupled representation in the correct direction.
%U https://aclanthology.org/2022.coling-1.467
%P 5251-5265
Markdown (Informal)
[Adapting to Non-Centered Languages for Zero-shot Multilingual Translation](https://aclanthology.org/2022.coling-1.467) (Qu & Watanabe, COLING 2022)
ACL