@inproceedings{toleu-etal-2022-language,
title = "Language-Independent Approach for Morphological Disambiguation",
author = "Toleu, Alymzhan and
Tolegen, Gulmira and
Mussabayev, Rustam",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.470",
pages = "5288--5297",
abstract = "This paper presents a language-independent approach for morphological disambiguation which has been regarded as an extension of POS tagging, jointly predicting complex morphological tags. In the proposed approach, all words, roots, POS and morpheme tags are embedded into vectors, and contexts representations from surface word and morphological contexts are calculated. Then the inner products between analyses and the context{'}s representations are computed to perform the disambiguation. The underlying hypothesis is that the correct morphological analysis should be closer to the context in a vector space. Experimental results show that the proposed approach outperforms the existing models on seven different language datasets. Concretely, compared with the baselines of MarMot and a sophisticated neural model (Seq2Seq), the proposed approach achieves around 6{\%} improvement in average accuracy for all languages while running about 6 and 33 times faster than MarMot and Seq2Seq, respectively.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="toleu-etal-2022-language">
<titleInfo>
<title>Language-Independent Approach for Morphological Disambiguation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alymzhan</namePart>
<namePart type="family">Toleu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gulmira</namePart>
<namePart type="family">Tolegen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rustam</namePart>
<namePart type="family">Mussabayev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chu-Ren</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansaem</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Key-Sun</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pum-Mo</namePart>
<namePart type="family">Ryu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Donatelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrizia</namePart>
<namePart type="family">Paggio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seokhwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Younggyun</namePart>
<namePart type="family">Hahm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhong</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tony</namePart>
<namePart type="given">Kyungil</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-Hoon</namePart>
<namePart type="family">Na</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a language-independent approach for morphological disambiguation which has been regarded as an extension of POS tagging, jointly predicting complex morphological tags. In the proposed approach, all words, roots, POS and morpheme tags are embedded into vectors, and contexts representations from surface word and morphological contexts are calculated. Then the inner products between analyses and the context’s representations are computed to perform the disambiguation. The underlying hypothesis is that the correct morphological analysis should be closer to the context in a vector space. Experimental results show that the proposed approach outperforms the existing models on seven different language datasets. Concretely, compared with the baselines of MarMot and a sophisticated neural model (Seq2Seq), the proposed approach achieves around 6% improvement in average accuracy for all languages while running about 6 and 33 times faster than MarMot and Seq2Seq, respectively.</abstract>
<identifier type="citekey">toleu-etal-2022-language</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.470</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>5288</start>
<end>5297</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Language-Independent Approach for Morphological Disambiguation
%A Toleu, Alymzhan
%A Tolegen, Gulmira
%A Mussabayev, Rustam
%Y Calzolari, Nicoletta
%Y Huang, Chu-Ren
%Y Kim, Hansaem
%Y Pustejovsky, James
%Y Wanner, Leo
%Y Choi, Key-Sun
%Y Ryu, Pum-Mo
%Y Chen, Hsin-Hsi
%Y Donatelli, Lucia
%Y Ji, Heng
%Y Kurohashi, Sadao
%Y Paggio, Patrizia
%Y Xue, Nianwen
%Y Kim, Seokhwan
%Y Hahm, Younggyun
%Y He, Zhong
%Y Lee, Tony Kyungil
%Y Santus, Enrico
%Y Bond, Francis
%Y Na, Seung-Hoon
%S Proceedings of the 29th International Conference on Computational Linguistics
%D 2022
%8 October
%I International Committee on Computational Linguistics
%C Gyeongju, Republic of Korea
%F toleu-etal-2022-language
%X This paper presents a language-independent approach for morphological disambiguation which has been regarded as an extension of POS tagging, jointly predicting complex morphological tags. In the proposed approach, all words, roots, POS and morpheme tags are embedded into vectors, and contexts representations from surface word and morphological contexts are calculated. Then the inner products between analyses and the context’s representations are computed to perform the disambiguation. The underlying hypothesis is that the correct morphological analysis should be closer to the context in a vector space. Experimental results show that the proposed approach outperforms the existing models on seven different language datasets. Concretely, compared with the baselines of MarMot and a sophisticated neural model (Seq2Seq), the proposed approach achieves around 6% improvement in average accuracy for all languages while running about 6 and 33 times faster than MarMot and Seq2Seq, respectively.
%U https://aclanthology.org/2022.coling-1.470
%P 5288-5297
Markdown (Informal)
[Language-Independent Approach for Morphological Disambiguation](https://aclanthology.org/2022.coling-1.470) (Toleu et al., COLING 2022)
ACL