@inproceedings{kim-2022-revisiting,
title = "Revisiting the Practical Effectiveness of Constituency Parse Extraction from Pre-trained Language Models",
author = "Kim, Taeuk",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.479",
pages = "5398--5408",
abstract = "Constituency Parse Extraction from Pre-trained Language Models (CPE-PLM) is a recent paradigm that attempts to induce constituency parse trees relying only on the internal knowledge of pre-trained language models. While attractive in the perspective that similar to in-context learning, it does not require task-specific fine-tuning, the practical effectiveness of such an approach still remains unclear, except that it can function as a probe for investigating language models{'} inner workings. In this work, we mathematically reformulate CPE-PLM and propose two advanced ensemble methods tailored for it, demonstrating that the new parsing paradigm can be competitive with common unsupervised parsers by introducing a set of heterogeneous PLMs combined using our techniques. Furthermore, we explore some scenarios where the trees generated by CPE-PLM are practically useful. Specifically, we show that CPE-PLM is more effective than typical supervised parsers in few-shot settings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-2022-revisiting">
<titleInfo>
<title>Revisiting the Practical Effectiveness of Constituency Parse Extraction from Pre-trained Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Taeuk</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chu-Ren</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansaem</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Key-Sun</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pum-Mo</namePart>
<namePart type="family">Ryu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Donatelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrizia</namePart>
<namePart type="family">Paggio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seokhwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Younggyun</namePart>
<namePart type="family">Hahm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhong</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tony</namePart>
<namePart type="given">Kyungil</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-Hoon</namePart>
<namePart type="family">Na</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Constituency Parse Extraction from Pre-trained Language Models (CPE-PLM) is a recent paradigm that attempts to induce constituency parse trees relying only on the internal knowledge of pre-trained language models. While attractive in the perspective that similar to in-context learning, it does not require task-specific fine-tuning, the practical effectiveness of such an approach still remains unclear, except that it can function as a probe for investigating language models’ inner workings. In this work, we mathematically reformulate CPE-PLM and propose two advanced ensemble methods tailored for it, demonstrating that the new parsing paradigm can be competitive with common unsupervised parsers by introducing a set of heterogeneous PLMs combined using our techniques. Furthermore, we explore some scenarios where the trees generated by CPE-PLM are practically useful. Specifically, we show that CPE-PLM is more effective than typical supervised parsers in few-shot settings.</abstract>
<identifier type="citekey">kim-2022-revisiting</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.479</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>5398</start>
<end>5408</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Revisiting the Practical Effectiveness of Constituency Parse Extraction from Pre-trained Language Models
%A Kim, Taeuk
%Y Calzolari, Nicoletta
%Y Huang, Chu-Ren
%Y Kim, Hansaem
%Y Pustejovsky, James
%Y Wanner, Leo
%Y Choi, Key-Sun
%Y Ryu, Pum-Mo
%Y Chen, Hsin-Hsi
%Y Donatelli, Lucia
%Y Ji, Heng
%Y Kurohashi, Sadao
%Y Paggio, Patrizia
%Y Xue, Nianwen
%Y Kim, Seokhwan
%Y Hahm, Younggyun
%Y He, Zhong
%Y Lee, Tony Kyungil
%Y Santus, Enrico
%Y Bond, Francis
%Y Na, Seung-Hoon
%S Proceedings of the 29th International Conference on Computational Linguistics
%D 2022
%8 October
%I International Committee on Computational Linguistics
%C Gyeongju, Republic of Korea
%F kim-2022-revisiting
%X Constituency Parse Extraction from Pre-trained Language Models (CPE-PLM) is a recent paradigm that attempts to induce constituency parse trees relying only on the internal knowledge of pre-trained language models. While attractive in the perspective that similar to in-context learning, it does not require task-specific fine-tuning, the practical effectiveness of such an approach still remains unclear, except that it can function as a probe for investigating language models’ inner workings. In this work, we mathematically reformulate CPE-PLM and propose two advanced ensemble methods tailored for it, demonstrating that the new parsing paradigm can be competitive with common unsupervised parsers by introducing a set of heterogeneous PLMs combined using our techniques. Furthermore, we explore some scenarios where the trees generated by CPE-PLM are practically useful. Specifically, we show that CPE-PLM is more effective than typical supervised parsers in few-shot settings.
%U https://aclanthology.org/2022.coling-1.479
%P 5398-5408
Markdown (Informal)
[Revisiting the Practical Effectiveness of Constituency Parse Extraction from Pre-trained Language Models](https://aclanthology.org/2022.coling-1.479) (Kim, COLING 2022)
ACL