@inproceedings{ihori-etal-2022-multi,
title = "Multi-Perspective Document Revision",
author = "Ihori, Mana and
Sato, Hiroshi and
Tanaka, Tomohiro and
Masumura, Ryo",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.535",
pages = "6128--6138",
abstract = "This paper presents a novel multi-perspective document revision task. In conventional studies on document revision, tasks such as grammatical error correction, sentence reordering, and discourse relation classification have been performed individually; however, these tasks simultaneously should be revised to improve the readability and clarity of a whole document. Thus, our study defines multi-perspective document revision as a task that simultaneously revises multiple perspectives. To model the task, we design a novel Japanese multi-perspective document revision dataset that simultaneously handles seven perspectives to improve the readability and clarity of a document. Although a large amount of data that simultaneously handles multiple perspectives is needed to model multi-perspective document revision elaborately, it is difficult to prepare such a large amount of this data. Therefore, our study offers a multi-perspective document revision modeling method that can use a limited amount of matched data (i.e., data for the multi-perspective document revision task) and external partially-matched data (e.g., data for the grammatical error correction task). Experiments using our created dataset demonstrate the effectiveness of using multiple partially-matched datasets to model the multi-perspective document revision task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ihori-etal-2022-multi">
<titleInfo>
<title>Multi-Perspective Document Revision</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mana</namePart>
<namePart type="family">Ihori</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroshi</namePart>
<namePart type="family">Sato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomohiro</namePart>
<namePart type="family">Tanaka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryo</namePart>
<namePart type="family">Masumura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a novel multi-perspective document revision task. In conventional studies on document revision, tasks such as grammatical error correction, sentence reordering, and discourse relation classification have been performed individually; however, these tasks simultaneously should be revised to improve the readability and clarity of a whole document. Thus, our study defines multi-perspective document revision as a task that simultaneously revises multiple perspectives. To model the task, we design a novel Japanese multi-perspective document revision dataset that simultaneously handles seven perspectives to improve the readability and clarity of a document. Although a large amount of data that simultaneously handles multiple perspectives is needed to model multi-perspective document revision elaborately, it is difficult to prepare such a large amount of this data. Therefore, our study offers a multi-perspective document revision modeling method that can use a limited amount of matched data (i.e., data for the multi-perspective document revision task) and external partially-matched data (e.g., data for the grammatical error correction task). Experiments using our created dataset demonstrate the effectiveness of using multiple partially-matched datasets to model the multi-perspective document revision task.</abstract>
<identifier type="citekey">ihori-etal-2022-multi</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.535</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>6128</start>
<end>6138</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Perspective Document Revision
%A Ihori, Mana
%A Sato, Hiroshi
%A Tanaka, Tomohiro
%A Masumura, Ryo
%S Proceedings of the 29th International Conference on Computational Linguistics
%D 2022
%8 October
%I International Committee on Computational Linguistics
%C Gyeongju, Republic of Korea
%F ihori-etal-2022-multi
%X This paper presents a novel multi-perspective document revision task. In conventional studies on document revision, tasks such as grammatical error correction, sentence reordering, and discourse relation classification have been performed individually; however, these tasks simultaneously should be revised to improve the readability and clarity of a whole document. Thus, our study defines multi-perspective document revision as a task that simultaneously revises multiple perspectives. To model the task, we design a novel Japanese multi-perspective document revision dataset that simultaneously handles seven perspectives to improve the readability and clarity of a document. Although a large amount of data that simultaneously handles multiple perspectives is needed to model multi-perspective document revision elaborately, it is difficult to prepare such a large amount of this data. Therefore, our study offers a multi-perspective document revision modeling method that can use a limited amount of matched data (i.e., data for the multi-perspective document revision task) and external partially-matched data (e.g., data for the grammatical error correction task). Experiments using our created dataset demonstrate the effectiveness of using multiple partially-matched datasets to model the multi-perspective document revision task.
%U https://aclanthology.org/2022.coling-1.535
%P 6128-6138
Markdown (Informal)
[Multi-Perspective Document Revision](https://aclanthology.org/2022.coling-1.535) (Ihori et al., COLING 2022)
ACL
- Mana Ihori, Hiroshi Sato, Tomohiro Tanaka, and Ryo Masumura. 2022. Multi-Perspective Document Revision. In Proceedings of the 29th International Conference on Computational Linguistics, pages 6128–6138, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.