@inproceedings{kishinami-etal-2022-target,
title = "Target-Guided Open-Domain Conversation Planning",
author = "Kishinami, Yosuke and
Akama, Reina and
Sato, Shiki and
Tokuhisa, Ryoko and
Suzuki, Jun and
Inui, Kentaro",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.55",
pages = "660--668",
abstract = "Prior studies addressing target-oriented conversational tasks lack a crucial notion that has been intensively studied in the context of goal-oriented artificial intelligence agents, namely, planning. In this study, we propose the task of Target-Guided Open-Domain Conversation Planning (TGCP) task to evaluate whether neural conversational agents have goal-oriented conversation planning abilities. Using the TGCP task, we investigate the conversation planning abilities of existing retrieval models and recent strong generative models. The experimental results reveal the challenges facing current technology.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kishinami-etal-2022-target">
<titleInfo>
<title>Target-Guided Open-Domain Conversation Planning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yosuke</namePart>
<namePart type="family">Kishinami</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reina</namePart>
<namePart type="family">Akama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shiki</namePart>
<namePart type="family">Sato</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryoko</namePart>
<namePart type="family">Tokuhisa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Suzuki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Prior studies addressing target-oriented conversational tasks lack a crucial notion that has been intensively studied in the context of goal-oriented artificial intelligence agents, namely, planning. In this study, we propose the task of Target-Guided Open-Domain Conversation Planning (TGCP) task to evaluate whether neural conversational agents have goal-oriented conversation planning abilities. Using the TGCP task, we investigate the conversation planning abilities of existing retrieval models and recent strong generative models. The experimental results reveal the challenges facing current technology.</abstract>
<identifier type="citekey">kishinami-etal-2022-target</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.55</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>660</start>
<end>668</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Target-Guided Open-Domain Conversation Planning
%A Kishinami, Yosuke
%A Akama, Reina
%A Sato, Shiki
%A Tokuhisa, Ryoko
%A Suzuki, Jun
%A Inui, Kentaro
%S Proceedings of the 29th International Conference on Computational Linguistics
%D 2022
%8 October
%I International Committee on Computational Linguistics
%C Gyeongju, Republic of Korea
%F kishinami-etal-2022-target
%X Prior studies addressing target-oriented conversational tasks lack a crucial notion that has been intensively studied in the context of goal-oriented artificial intelligence agents, namely, planning. In this study, we propose the task of Target-Guided Open-Domain Conversation Planning (TGCP) task to evaluate whether neural conversational agents have goal-oriented conversation planning abilities. Using the TGCP task, we investigate the conversation planning abilities of existing retrieval models and recent strong generative models. The experimental results reveal the challenges facing current technology.
%U https://aclanthology.org/2022.coling-1.55
%P 660-668
Markdown (Informal)
[Target-Guided Open-Domain Conversation Planning](https://aclanthology.org/2022.coling-1.55) (Kishinami et al., COLING 2022)
ACL
- Yosuke Kishinami, Reina Akama, Shiki Sato, Ryoko Tokuhisa, Jun Suzuki, and Kentaro Inui. 2022. Target-Guided Open-Domain Conversation Planning. In Proceedings of the 29th International Conference on Computational Linguistics, pages 660–668, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.