A Survey on Multimodal Disinformation Detection

Firoj Alam, Stefano Cresci, Tanmoy Chakraborty, Fabrizio Silvestri, Dimiter Dimitrov, Giovanni Da San Martino, Shaden Shaar, Hamed Firooz, Preslav Nakov


Abstract
Recent years have witnessed the proliferation of offensive content online such as fake news, propaganda, misinformation, and disinformation. While initially this was mostly about textual content, over time images and videos gained popularity, as they are much easier to consume, attract more attention, and spread further than text. As a result, researchers started leveraging different modalities and combinations thereof to tackle online multimodal offensive content. In this study, we offer a survey on the state-of-the-art on multimodal disinformation detection covering various combinations of modalities: text, images, speech, video, social media network structure, and temporal information. Moreover, while some studies focused on factuality, others investigated how harmful the content is. While these two components in the definition of disinformation – (i) factuality, and (ii) harmfulness –, are equally important, they are typically studied in isolation. Thus, we argue for the need to tackle disinformation detection by taking into account multiple modalities as well as both factuality and harmfulness, in the same framework. Finally, we discuss current challenges and future research directions.
Anthology ID:
2022.coling-1.576
Volume:
Proceedings of the 29th International Conference on Computational Linguistics
Month:
October
Year:
2022
Address:
Gyeongju, Republic of Korea
Venue:
COLING
SIG:
Publisher:
International Committee on Computational Linguistics
Note:
Pages:
6625–6643
Language:
URL:
https://aclanthology.org/2022.coling-1.576
DOI:
Bibkey:
Cite (ACL):
Firoj Alam, Stefano Cresci, Tanmoy Chakraborty, Fabrizio Silvestri, Dimiter Dimitrov, Giovanni Da San Martino, Shaden Shaar, Hamed Firooz, and Preslav Nakov. 2022. A Survey on Multimodal Disinformation Detection. In Proceedings of the 29th International Conference on Computational Linguistics, pages 6625–6643, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
Cite (Informal):
A Survey on Multimodal Disinformation Detection (Alam et al., COLING 2022)
Copy Citation:
PDF:
https://aclanthology.org/2022.coling-1.576.pdf
Data
Hateful MemesHateful Memes Challenge