A Structure-Aware Argument Encoder for Literature Discourse Analysis
Yinzi Li, Wei Chen, Zhongyu Wei, Yujun Huang, Chujun Wang, Siyuan Wang, Qi Zhang, Xuanjing Huang, Libo Wu
Correct Metadata for
Abstract
Existing research for argument representation learning mainly treats tokens in the sentence equally and ignores the implied structure information of argumentative context. In this paper, we propose to separate tokens into two groups, namely framing tokens and topic ones, to capture structural information of arguments. In addition, we consider high-level structure by incorporating paragraph-level position information. A novel structure-aware argument encoder is proposed for literature discourse analysis. Experimental results on both a self-constructed corpus and a public corpus show the effectiveness of our model. Resources are available at https://github.com/lemuria-wchen/SAE.- Anthology ID:
- 2022.coling-1.619
- Volume:
- Proceedings of the 29th International Conference on Computational Linguistics
- Month:
- October
- Year:
- 2022
- Address:
- Gyeongju, Republic of Korea
- Editors:
- Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, Seung-Hoon Na
- Venue:
- COLING
- SIG:
- Publisher:
- International Committee on Computational Linguistics
- Note:
- Pages:
- 7093–7098
- Language:
- URL:
- https://aclanthology.org/2022.coling-1.619/
- DOI:
- Bibkey:
- Cite (ACL):
- Yinzi Li, Wei Chen, Zhongyu Wei, Yujun Huang, Chujun Wang, Siyuan Wang, Qi Zhang, Xuanjing Huang, and Libo Wu. 2022. A Structure-Aware Argument Encoder for Literature Discourse Analysis. In Proceedings of the 29th International Conference on Computational Linguistics, pages 7093–7098, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
- Cite (Informal):
- A Structure-Aware Argument Encoder for Literature Discourse Analysis (Li et al., COLING 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.coling-1.619.pdf
Export citation
@inproceedings{li-etal-2022-structure,
title = "A Structure-Aware Argument Encoder for Literature Discourse Analysis",
author = "Li, Yinzi and
Chen, Wei and
Wei, Zhongyu and
Huang, Yujun and
Wang, Chujun and
Wang, Siyuan and
Zhang, Qi and
Huang, Xuanjing and
Wu, Libo",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.619/",
pages = "7093--7098",
abstract = "Existing research for argument representation learning mainly treats tokens in the sentence equally and ignores the implied structure information of argumentative context. In this paper, we propose to separate tokens into two groups, namely framing tokens and topic ones, to capture structural information of arguments. In addition, we consider high-level structure by incorporating paragraph-level position information. A novel structure-aware argument encoder is proposed for literature discourse analysis. Experimental results on both a self-constructed corpus and a public corpus show the effectiveness of our model. Resources are available at \url{https://github.com/lemuria-wchen/SAE}."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2022-structure">
<titleInfo>
<title>A Structure-Aware Argument Encoder for Literature Discourse Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yinzi</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhongyu</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yujun</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chujun</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siyuan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Libo</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chu-Ren</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansaem</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Key-Sun</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pum-Mo</namePart>
<namePart type="family">Ryu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Donatelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrizia</namePart>
<namePart type="family">Paggio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seokhwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Younggyun</namePart>
<namePart type="family">Hahm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhong</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tony</namePart>
<namePart type="given">Kyungil</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-Hoon</namePart>
<namePart type="family">Na</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing research for argument representation learning mainly treats tokens in the sentence equally and ignores the implied structure information of argumentative context. In this paper, we propose to separate tokens into two groups, namely framing tokens and topic ones, to capture structural information of arguments. In addition, we consider high-level structure by incorporating paragraph-level position information. A novel structure-aware argument encoder is proposed for literature discourse analysis. Experimental results on both a self-constructed corpus and a public corpus show the effectiveness of our model. Resources are available at https://github.com/lemuria-wchen/SAE.</abstract>
<identifier type="citekey">li-etal-2022-structure</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.619/</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>7093</start>
<end>7098</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings %T A Structure-Aware Argument Encoder for Literature Discourse Analysis %A Li, Yinzi %A Chen, Wei %A Wei, Zhongyu %A Huang, Yujun %A Wang, Chujun %A Wang, Siyuan %A Zhang, Qi %A Huang, Xuanjing %A Wu, Libo %Y Calzolari, Nicoletta %Y Huang, Chu-Ren %Y Kim, Hansaem %Y Pustejovsky, James %Y Wanner, Leo %Y Choi, Key-Sun %Y Ryu, Pum-Mo %Y Chen, Hsin-Hsi %Y Donatelli, Lucia %Y Ji, Heng %Y Kurohashi, Sadao %Y Paggio, Patrizia %Y Xue, Nianwen %Y Kim, Seokhwan %Y Hahm, Younggyun %Y He, Zhong %Y Lee, Tony Kyungil %Y Santus, Enrico %Y Bond, Francis %Y Na, Seung-Hoon %S Proceedings of the 29th International Conference on Computational Linguistics %D 2022 %8 October %I International Committee on Computational Linguistics %C Gyeongju, Republic of Korea %F li-etal-2022-structure %X Existing research for argument representation learning mainly treats tokens in the sentence equally and ignores the implied structure information of argumentative context. In this paper, we propose to separate tokens into two groups, namely framing tokens and topic ones, to capture structural information of arguments. In addition, we consider high-level structure by incorporating paragraph-level position information. A novel structure-aware argument encoder is proposed for literature discourse analysis. Experimental results on both a self-constructed corpus and a public corpus show the effectiveness of our model. Resources are available at https://github.com/lemuria-wchen/SAE. %U https://aclanthology.org/2022.coling-1.619/ %P 7093-7098
Markdown (Informal)
[A Structure-Aware Argument Encoder for Literature Discourse Analysis](https://aclanthology.org/2022.coling-1.619/) (Li et al., COLING 2022)
- A Structure-Aware Argument Encoder for Literature Discourse Analysis (Li et al., COLING 2022)
ACL
- Yinzi Li, Wei Chen, Zhongyu Wei, Yujun Huang, Chujun Wang, Siyuan Wang, Qi Zhang, Xuanjing Huang, and Libo Wu. 2022. A Structure-Aware Argument Encoder for Literature Discourse Analysis. In Proceedings of the 29th International Conference on Computational Linguistics, pages 7093–7098, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.