@inproceedings{chen-etal-2022-transformer,
title = "A Transformer-based Threshold-Free Framework for Multi-Intent {NLU}",
author = "Chen, Lisung and
Chen, Nuo and
Zou, Yuexian and
Wang, Yong and
Sun, Xinzhong",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2022.coling-1.629",
pages = "7187--7192",
abstract = "Multi-intent natural language understanding (NLU) has recently gained attention. It detects multiple intents in an utterance, which is better suited to real-world scenarios. However, the state-of-the-art joint NLU models mainly detect multiple intents on threshold-based strategy, resulting in one main issue: the model is extremely sensitive to the threshold settings. In this paper, we propose a transformer-based Threshold-Free Multi-intent NLU model (TFMN) with multi-task learning (MTL). Specifically, we first leverage multiple layers of a transformer-based encoder to generate multi-grain representations. Then we exploit the information of the number of multiple intents in each utterance without additional manual annotations and propose an auxiliary detection task: Intent Number detection (IND). Furthermore, we propose a threshold-free intent multi-intent classifier that utilizes the output of IND task and detects the multiple intents without depending on the threshold. Extensive experiments demonstrate that our proposed model achieves superior results on two public multi-intent datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2022-transformer">
<titleInfo>
<title>A Transformer-based Threshold-Free Framework for Multi-Intent NLU</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lisung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuexian</namePart>
<namePart type="family">Zou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yong</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinzhong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 29th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicoletta</namePart>
<namePart type="family">Calzolari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chu-Ren</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hansaem</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Pustejovsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Key-Sun</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pum-Mo</namePart>
<namePart type="family">Ryu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Donatelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sadao</namePart>
<namePart type="family">Kurohashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrizia</namePart>
<namePart type="family">Paggio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nianwen</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seokhwan</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Younggyun</namePart>
<namePart type="family">Hahm</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhong</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tony</namePart>
<namePart type="given">Kyungil</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-Hoon</namePart>
<namePart type="family">Na</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multi-intent natural language understanding (NLU) has recently gained attention. It detects multiple intents in an utterance, which is better suited to real-world scenarios. However, the state-of-the-art joint NLU models mainly detect multiple intents on threshold-based strategy, resulting in one main issue: the model is extremely sensitive to the threshold settings. In this paper, we propose a transformer-based Threshold-Free Multi-intent NLU model (TFMN) with multi-task learning (MTL). Specifically, we first leverage multiple layers of a transformer-based encoder to generate multi-grain representations. Then we exploit the information of the number of multiple intents in each utterance without additional manual annotations and propose an auxiliary detection task: Intent Number detection (IND). Furthermore, we propose a threshold-free intent multi-intent classifier that utilizes the output of IND task and detects the multiple intents without depending on the threshold. Extensive experiments demonstrate that our proposed model achieves superior results on two public multi-intent datasets.</abstract>
<identifier type="citekey">chen-etal-2022-transformer</identifier>
<location>
<url>https://aclanthology.org/2022.coling-1.629</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>7187</start>
<end>7192</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Transformer-based Threshold-Free Framework for Multi-Intent NLU
%A Chen, Lisung
%A Chen, Nuo
%A Zou, Yuexian
%A Wang, Yong
%A Sun, Xinzhong
%Y Calzolari, Nicoletta
%Y Huang, Chu-Ren
%Y Kim, Hansaem
%Y Pustejovsky, James
%Y Wanner, Leo
%Y Choi, Key-Sun
%Y Ryu, Pum-Mo
%Y Chen, Hsin-Hsi
%Y Donatelli, Lucia
%Y Ji, Heng
%Y Kurohashi, Sadao
%Y Paggio, Patrizia
%Y Xue, Nianwen
%Y Kim, Seokhwan
%Y Hahm, Younggyun
%Y He, Zhong
%Y Lee, Tony Kyungil
%Y Santus, Enrico
%Y Bond, Francis
%Y Na, Seung-Hoon
%S Proceedings of the 29th International Conference on Computational Linguistics
%D 2022
%8 October
%I International Committee on Computational Linguistics
%C Gyeongju, Republic of Korea
%F chen-etal-2022-transformer
%X Multi-intent natural language understanding (NLU) has recently gained attention. It detects multiple intents in an utterance, which is better suited to real-world scenarios. However, the state-of-the-art joint NLU models mainly detect multiple intents on threshold-based strategy, resulting in one main issue: the model is extremely sensitive to the threshold settings. In this paper, we propose a transformer-based Threshold-Free Multi-intent NLU model (TFMN) with multi-task learning (MTL). Specifically, we first leverage multiple layers of a transformer-based encoder to generate multi-grain representations. Then we exploit the information of the number of multiple intents in each utterance without additional manual annotations and propose an auxiliary detection task: Intent Number detection (IND). Furthermore, we propose a threshold-free intent multi-intent classifier that utilizes the output of IND task and detects the multiple intents without depending on the threshold. Extensive experiments demonstrate that our proposed model achieves superior results on two public multi-intent datasets.
%U https://aclanthology.org/2022.coling-1.629
%P 7187-7192
Markdown (Informal)
[A Transformer-based Threshold-Free Framework for Multi-Intent NLU](https://aclanthology.org/2022.coling-1.629) (Chen et al., COLING 2022)
ACL