@inproceedings{hopkins-2022-towards,
title = "Towards More Natural Artificial Languages",
author = "Hopkins, Mark",
editor = "Fokkens, Antske and
Srikumar, Vivek",
booktitle = "Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates (Hybrid)",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.conll-1.7",
doi = "10.18653/v1/2022.conll-1.7",
pages = "85--94",
abstract = "A number of papers have recently argued in favor of using artificially generated languages to investigate the inductive biases of linguistic models, or to develop models for low-resource languages with underrepresented typologies. But the promise of artificial languages comes with a caveat: if these artificial languages are not sufficiently reflective of natural language, then using them as a proxy may lead to inaccurate conclusions. In this paper, we take a step towards increasing the realism of artificial language by introducing a variant of indexed grammars that draw their weights from hierarchical Pitman-Yor processes. We show that this framework generates languages that emulate the statistics of natural language corpora better than the current approach of directly formulating weighted context-free grammars.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hopkins-2022-towards">
<titleInfo>
<title>Towards More Natural Artificial Languages</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Hopkins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Antske</namePart>
<namePart type="family">Fokkens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates (Hybrid)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>A number of papers have recently argued in favor of using artificially generated languages to investigate the inductive biases of linguistic models, or to develop models for low-resource languages with underrepresented typologies. But the promise of artificial languages comes with a caveat: if these artificial languages are not sufficiently reflective of natural language, then using them as a proxy may lead to inaccurate conclusions. In this paper, we take a step towards increasing the realism of artificial language by introducing a variant of indexed grammars that draw their weights from hierarchical Pitman-Yor processes. We show that this framework generates languages that emulate the statistics of natural language corpora better than the current approach of directly formulating weighted context-free grammars.</abstract>
<identifier type="citekey">hopkins-2022-towards</identifier>
<identifier type="doi">10.18653/v1/2022.conll-1.7</identifier>
<location>
<url>https://aclanthology.org/2022.conll-1.7</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>85</start>
<end>94</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Towards More Natural Artificial Languages
%A Hopkins, Mark
%Y Fokkens, Antske
%Y Srikumar, Vivek
%S Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL)
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates (Hybrid)
%F hopkins-2022-towards
%X A number of papers have recently argued in favor of using artificially generated languages to investigate the inductive biases of linguistic models, or to develop models for low-resource languages with underrepresented typologies. But the promise of artificial languages comes with a caveat: if these artificial languages are not sufficiently reflective of natural language, then using them as a proxy may lead to inaccurate conclusions. In this paper, we take a step towards increasing the realism of artificial language by introducing a variant of indexed grammars that draw their weights from hierarchical Pitman-Yor processes. We show that this framework generates languages that emulate the statistics of natural language corpora better than the current approach of directly formulating weighted context-free grammars.
%R 10.18653/v1/2022.conll-1.7
%U https://aclanthology.org/2022.conll-1.7
%U https://doi.org/10.18653/v1/2022.conll-1.7
%P 85-94
Markdown (Informal)
[Towards More Natural Artificial Languages](https://aclanthology.org/2022.conll-1.7) (Hopkins, CoNLL 2022)
ACL
- Mark Hopkins. 2022. Towards More Natural Artificial Languages. In Proceedings of the 26th Conference on Computational Natural Language Learning (CoNLL), pages 85–94, Abu Dhabi, United Arab Emirates (Hybrid). Association for Computational Linguistics.