@inproceedings{choi-etal-2022-fake,
title = "How does fake news use a thumbnail? {CLIP}-based Multimodal Detection on the Unrepresentative News Image",
author = "Choi, Hyewon and
Yoon, Yejun and
Yoon, Seunghyun and
Park, Kunwoo",
editor = "Chakraborty, Tanmoy and
Akhtar, Md. Shad and
Shu, Kai and
Bernard, H. Russell and
Liakata, Maria and
Nakov, Preslav and
Srivastava, Aseem",
booktitle = "Proceedings of the Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situations",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.constraint-1.10/",
doi = "10.18653/v1/2022.constraint-1.10",
pages = "86--94",
abstract = "This study investigates how fake news use the thumbnail image for a news article. We aim at capturing the degree of semantic incongruity between news text and image by using the pretrained CLIP representation. Motivated by the stylistic distinctiveness in fake news text, we examine whether fake news tends to use an irrelevant image to the news content. Results show that fake news tends to have a high degree of semantic incongruity than general news. We further attempt to detect such image-text incongruity by training classification models on a newly generated dataset. A manual evaluation suggests our method can find news articles of which the thumbnail image is semantically irrelevant to news text with an accuracy of 0.8. We also release a new dataset of image and news text pairs with the incongruity label, facilitating future studies on the direction."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="choi-etal-2022-fake">
<titleInfo>
<title>How does fake news use a thumbnail? CLIP-based Multimodal Detection on the Unrepresentative News Image</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hyewon</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yejun</namePart>
<namePart type="family">Yoon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seunghyun</namePart>
<namePart type="family">Yoon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kunwoo</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tanmoy</namePart>
<namePart type="family">Chakraborty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Md.</namePart>
<namePart type="given">Shad</namePart>
<namePart type="family">Akhtar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">Shu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="given">Russell</namePart>
<namePart type="family">Bernard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Liakata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aseem</namePart>
<namePart type="family">Srivastava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This study investigates how fake news use the thumbnail image for a news article. We aim at capturing the degree of semantic incongruity between news text and image by using the pretrained CLIP representation. Motivated by the stylistic distinctiveness in fake news text, we examine whether fake news tends to use an irrelevant image to the news content. Results show that fake news tends to have a high degree of semantic incongruity than general news. We further attempt to detect such image-text incongruity by training classification models on a newly generated dataset. A manual evaluation suggests our method can find news articles of which the thumbnail image is semantically irrelevant to news text with an accuracy of 0.8. We also release a new dataset of image and news text pairs with the incongruity label, facilitating future studies on the direction.</abstract>
<identifier type="citekey">choi-etal-2022-fake</identifier>
<identifier type="doi">10.18653/v1/2022.constraint-1.10</identifier>
<location>
<url>https://aclanthology.org/2022.constraint-1.10/</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>86</start>
<end>94</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T How does fake news use a thumbnail? CLIP-based Multimodal Detection on the Unrepresentative News Image
%A Choi, Hyewon
%A Yoon, Yejun
%A Yoon, Seunghyun
%A Park, Kunwoo
%Y Chakraborty, Tanmoy
%Y Akhtar, Md. Shad
%Y Shu, Kai
%Y Bernard, H. Russell
%Y Liakata, Maria
%Y Nakov, Preslav
%Y Srivastava, Aseem
%S Proceedings of the Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situations
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F choi-etal-2022-fake
%X This study investigates how fake news use the thumbnail image for a news article. We aim at capturing the degree of semantic incongruity between news text and image by using the pretrained CLIP representation. Motivated by the stylistic distinctiveness in fake news text, we examine whether fake news tends to use an irrelevant image to the news content. Results show that fake news tends to have a high degree of semantic incongruity than general news. We further attempt to detect such image-text incongruity by training classification models on a newly generated dataset. A manual evaluation suggests our method can find news articles of which the thumbnail image is semantically irrelevant to news text with an accuracy of 0.8. We also release a new dataset of image and news text pairs with the incongruity label, facilitating future studies on the direction.
%R 10.18653/v1/2022.constraint-1.10
%U https://aclanthology.org/2022.constraint-1.10/
%U https://doi.org/10.18653/v1/2022.constraint-1.10
%P 86-94
Markdown (Informal)
[How does fake news use a thumbnail? CLIP-based Multimodal Detection on the Unrepresentative News Image](https://aclanthology.org/2022.constraint-1.10/) (Choi et al., CONSTRAINT 2022)
ACL