@inproceedings{prazak-konopik-2022-end,
title = "End-to-end Multilingual Coreference Resolution with Mention Head Prediction",
author = "Pra{\v{z}}{\'a}k, Ond{\v{r}}ej and
Konopik, Miloslav",
editor = "{\v{Z}}abokrtsk{\'y}, Zden{\v{e}}k and
Ogrodniczuk, Maciej",
booktitle = "Proceedings of the CRAC 2022 Shared Task on Multilingual Coreference Resolution",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.crac-mcr.3",
pages = "23--27",
abstract = "This paper describes our approach to the CRAC 2022 Shared Task on Multilingual Coreference Resolution. Our model is based on a state-of-the-art end-to-end coreference resolution system. Apart from joined multilingual training, we improved our results with mention head prediction. We also tried to integrate dependency information into our model. Our system ended up in third place. Moreover, we reached the best performance on two datasets out of 13.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="prazak-konopik-2022-end">
<titleInfo>
<title>End-to-end Multilingual Coreference Resolution with Mention Head Prediction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Pražák</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miloslav</namePart>
<namePart type="family">Konopik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the CRAC 2022 Shared Task on Multilingual Coreference Resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zdeněk</namePart>
<namePart type="family">Žabokrtský</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maciej</namePart>
<namePart type="family">Ogrodniczuk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Gyeongju, Republic of Korea</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our approach to the CRAC 2022 Shared Task on Multilingual Coreference Resolution. Our model is based on a state-of-the-art end-to-end coreference resolution system. Apart from joined multilingual training, we improved our results with mention head prediction. We also tried to integrate dependency information into our model. Our system ended up in third place. Moreover, we reached the best performance on two datasets out of 13.</abstract>
<identifier type="citekey">prazak-konopik-2022-end</identifier>
<location>
<url>https://aclanthology.org/2022.crac-mcr.3</url>
</location>
<part>
<date>2022-10</date>
<extent unit="page">
<start>23</start>
<end>27</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T End-to-end Multilingual Coreference Resolution with Mention Head Prediction
%A Pražák, Ondřej
%A Konopik, Miloslav
%Y Žabokrtský, Zdeněk
%Y Ogrodniczuk, Maciej
%S Proceedings of the CRAC 2022 Shared Task on Multilingual Coreference Resolution
%D 2022
%8 October
%I Association for Computational Linguistics
%C Gyeongju, Republic of Korea
%F prazak-konopik-2022-end
%X This paper describes our approach to the CRAC 2022 Shared Task on Multilingual Coreference Resolution. Our model is based on a state-of-the-art end-to-end coreference resolution system. Apart from joined multilingual training, we improved our results with mention head prediction. We also tried to integrate dependency information into our model. Our system ended up in third place. Moreover, we reached the best performance on two datasets out of 13.
%U https://aclanthology.org/2022.crac-mcr.3
%P 23-27
Markdown (Informal)
[End-to-end Multilingual Coreference Resolution with Mention Head Prediction](https://aclanthology.org/2022.crac-mcr.3) (Pražák & Konopik, CRAC 2022)
ACL