@inproceedings{choudhary-oriordan-2022-cross,
title = "Cross-lingual Semantic Role Labelling with the {V}al{P}a{L} Database Knowledge",
author = "Choudhary, Chinmay and
O{'}Riordan, Colm",
editor = "Agirre, Eneko and
Apidianaki, Marianna and
Vuli{\'c}, Ivan",
booktitle = "Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures",
month = may,
year = "2022",
address = "Dublin, Ireland and Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.deelio-1.1",
doi = "10.18653/v1/2022.deelio-1.1",
pages = "1--10",
abstract = "Cross-lingual Transfer Learning typically involves training a model on a high-resource sourcelanguage and applying it to a low-resource tar-get language. In this work we introduce a lexi-cal database calledValency Patterns Leipzig(ValPal)which provides the argument patterninformation about various verb-forms in mul-tiple languages including low-resource langua-ges. We also provide a framework to integratethe ValPal database knowledge into the state-of-the-art LSTM based model for cross-lingualsemantic role labelling. Experimental resultsshow that integrating such knowledge resultedin am improvement in performance of the mo-del on all the target languages on which it isevaluated.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="choudhary-oriordan-2022-cross">
<titleInfo>
<title>Cross-lingual Semantic Role Labelling with the ValPaL Database Knowledge</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chinmay</namePart>
<namePart type="family">Choudhary</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Colm</namePart>
<namePart type="family">O’Riordan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eneko</namePart>
<namePart type="family">Agirre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Vulić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland and Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Cross-lingual Transfer Learning typically involves training a model on a high-resource sourcelanguage and applying it to a low-resource tar-get language. In this work we introduce a lexi-cal database calledValency Patterns Leipzig(ValPal)which provides the argument patterninformation about various verb-forms in mul-tiple languages including low-resource langua-ges. We also provide a framework to integratethe ValPal database knowledge into the state-of-the-art LSTM based model for cross-lingualsemantic role labelling. Experimental resultsshow that integrating such knowledge resultedin am improvement in performance of the mo-del on all the target languages on which it isevaluated.</abstract>
<identifier type="citekey">choudhary-oriordan-2022-cross</identifier>
<identifier type="doi">10.18653/v1/2022.deelio-1.1</identifier>
<location>
<url>https://aclanthology.org/2022.deelio-1.1</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>1</start>
<end>10</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cross-lingual Semantic Role Labelling with the ValPaL Database Knowledge
%A Choudhary, Chinmay
%A O’Riordan, Colm
%Y Agirre, Eneko
%Y Apidianaki, Marianna
%Y Vulić, Ivan
%S Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland and Online
%F choudhary-oriordan-2022-cross
%X Cross-lingual Transfer Learning typically involves training a model on a high-resource sourcelanguage and applying it to a low-resource tar-get language. In this work we introduce a lexi-cal database calledValency Patterns Leipzig(ValPal)which provides the argument patterninformation about various verb-forms in mul-tiple languages including low-resource langua-ges. We also provide a framework to integratethe ValPal database knowledge into the state-of-the-art LSTM based model for cross-lingualsemantic role labelling. Experimental resultsshow that integrating such knowledge resultedin am improvement in performance of the mo-del on all the target languages on which it isevaluated.
%R 10.18653/v1/2022.deelio-1.1
%U https://aclanthology.org/2022.deelio-1.1
%U https://doi.org/10.18653/v1/2022.deelio-1.1
%P 1-10
Markdown (Informal)
[Cross-lingual Semantic Role Labelling with the ValPaL Database Knowledge](https://aclanthology.org/2022.deelio-1.1) (Choudhary & O’Riordan, DeeLIO 2022)
ACL