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Abstract

Coreference resolution such as for anaphora
has been an essential challenge that is com-
monly found in conversational machine read-
ing comprehension (CMRC). This task aims to
determine the referential entity to which a pro-
noun refers on the basis of contextual informa-
tion. Existing approaches based on pre-trained
language models (PLMs) mainly rely on an end-
to-end method, which still has limitations in
clarifying referential dependency. In this study,
a novel graph-based approach is proposed to
integrate the coreference of given text into
graph structures (called coreference graphs),
which can pinpoint a pronoun’s referential en-
tity. We propose two graph-combined methods,
evidence-enhanced and the fusion model, for
CMRC to integrate coreference graphs from dif-
ferent levels of the PLM architecture. Evidence-
enhanced refers to textual level methods that
include an evidence generator (for generating
new text to elaborate a pronoun) and enhanced
question (for rewriting a pronoun in a question)
as PLM input. The fusion model is a struc-
tural level method that combines the PLM with
a graph neural network. We evaluated these
approaches on a CoQA pronoun-containing
dataset and the whole CoQA dataset. The result
showed that our methods can outperform base-
line PLM methods with BERT and RoBERTa.

1 Introduction

In recent years, using a large-scale pre-trained lan-
guage model (PLM) as a backbone for various
challenging machine comprehension tasks (Devlin
et al., 2019) has become fundamental, especially
in conversational machine reading comprehension
(CMRC) (Liu et al., 2019a). CMRC tasks not only
require a model to fully understand the given ar-
ticles but also propose to mimic the way humans
seek information in conversations through question-
answering. Most PLM utilize attention mechanism
and achieve positive results on a broad range of
CMRC datasets (Choi et al., 2018; Reddy et al.,

Figure 1: Coreference resolution is required for end-to-
end PLM in CMRC task.

2019). PLMs generally use an end-to-end approach
trained from questions to answers. However, the
explainability of the answers generated through
the intrinsic multi-head self-attention mechanism
remains insufficient. Although these PLMs have
demonstrated great advantages in terms of solv-
ing questions that simply need semantic matching,
limitations in logical comprehension (Ding et al.,
2019) such as in coreference resolution still exist.

Coreference resolution such as for anaphora (von
Heusinger and Egli, 2012) is commonly found in
CMRC tasks. Anaphora can be described as a pro-
noun word (anaphor) contained in a current ques-
tion, in which its referential entity (antecedent) has
already been introduced earlier in the conversa-
tion history or article context. As shown in Figure
1, to answer the current question “Did she have
any visitors?”, the model requires that the pronoun
“she” be resolved as an anaphor referring to the
entity “Jessica” as its antecedent, on the basis of
the given context and conversation history. There-
fore, CMRC models require mechanisms that can
resolve referential dependencies to properly under-
stand the intent of current questions.

Considering the shortcomings of the PLM ap-
proach in logical comprehension such as in coref-
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erence resolution, research on how to better adapt
models to learn reasoning is gradually gaining at-
tention (Yeh and Chen, 2019; Qu et al., 2019; Song
et al., 2018). FlowQA (Huang et al., 2019) was pro-
posed to add a reasoning layer between questions
and answers to incorporate intermediate representa-
tions of a conversation history. The question rewrit-
ing (QR) model (Vakulenko et al., 2021; Lin et al.,
2020) was proposed to rewrite current questions on
the basis of a conversation history. Specifically, the
QR model simplifies complex multi-turn question-
answering (QA) tasks into single-turn QA tasks,
which can solve a current question without a con-
versation history.

However, because these models are built through
the embeddings of a conversation history (Qu et al.,
2019), they generally suffer from two drawbacks in
coreference reasoning for CMRC tasks. (1) Since
the input length of a conversation history is limited
by the PLM’s structure, the current question some-
times contains pronouns whose referential entity
does not appear in the conversation history, so the
model cannot accordingly resolve referential depen-
dencies. (2) To achieve coreference reasoning, a
CMRC model also needs to seek information from
the context of articles. Due to the sequence nature
of the PLM and the multiple referential dependen-
cies in the context of an article, these models can-
not handle each referential dependency precisely,
as shown in Figure 2’s context part in different
colors.

In this paper, we propose solving the corefer-
ence of a target pronoun through additional mined
information to enhance PLMs’ coreference reason-
ing ability for CMRC. A novel graph approach is
proposed that integrates the coreferences of given
text into graph structures, which we call the coref-
erence graph. The coreference graph is constructed
separately by using the conversation history and ar-
ticle context as text information. Each entity in the
graph holds a unique place label in accordance with
the text information, which can be used to pinpoint
every pronoun’s referential dependency precisely.
To better implement the coreference graph as an
enhanced component into PLMs, we propose two
graph-combined methods: the evidence-enhanced
method and the fusion model method. These two
methods integrate graph information from the tex-
tual and structural levels of the PLM architecture,
respectively.

The evidence-enhanced method involves two

textual level methods that enrich the PLM’s input
information for coreference reasoning: an evidence
generator (EG) generates new text to elaborate pro-
nouns, and an enhanced question (EQ) rewrites a
pronoun into a referential entity in a question.

The fusion model is a structural level method
that combines the PLM with a graph neural net-
work. This model treats the PLM as an encoder to
extract sequence features of pronouns and referen-
tial words from input. After that, the graph features
of the corresponding words are computed by graph
neural networks on the basis of the connectivity
of the coreference graph. These two features are
integrated using learnable weights to enhance the
PLM’s coreference reasoning ability.

For the experiments, we used questions from
CoQA (Reddy et al., 2019) that contained pronouns
to compose a new dataset (pronoun-containing
dataset) specialized for the coreference reasoning
ability of the CMRC model. We evaluated various
combinations of our proposed methods on differ-
ent PLMs, and we also compared them with the
existing QR approach. The results showed that
our methods can greatly outperform in terms of F1
score on the CoQA pronoun-containing dataset, 2.6
on BERT (Devlin et al., 2019) and 0.7 on RoBERTa
(Liu et al., 2019b). We also used the whole
CoQA dataset to evaluate the fusion model, which
achieved the best performance in our methods, to
compare its overall performance with RoBERTa.
The contributions of this paper are as follows.

• We propose a novel graph approach for coref-
erence resolution. This approach can establish
referential dependency that appears not only
in a conversation history but also in an article
context.

• We show that both our evidence-enhanced and
fusion model methods boost the performance
of different PLMs in CMRC coreference res-
olution. Therefore, we prove that the intro-
duction of additional information can further
leverage the performance of PLMs in complex
reasoning such as in coreference resolution.

• Our approaches provide a precise reasoning
route for CMRC’s coreference resolution and
overcome the PLM model’s weakness of in-
terpretability.
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Figure 2: Overview of evidence-enhanced and fusion model. To answer current question, model should determine
pronoun’s referential entity through context or conversation history; graph-based coreference resolution can precisely
determine dependency and add additional information to current question. Left part denotes textual level method of
evidence-enhanced method. Right part denotes fusion model and fusion of PLM and graph embedding.

2 Background

2.1 Pre-trained Language Model

In recent years, the emergence of pre-trained lan-
guage models (PLMs), including BERT (Devlin
et al., 2019), GPT-2 (Radford et al., 2019), XL-
NET (Yang et al., 2019), and RoBERTa (Liu et al.,
2019b), has refreshed the performance of various
NLP tasks with advanced comprehension abilities.
BERT is a representative model that is based on a
multi-layer transformer (Vaswani et al., 2017). It
is trained by using a massive amount of text data
through a masked language model and next sen-
tence prediction. There have been several improve-
ments to the BERT model (Qiu et al., 2020), such
as ConvBERT (Jiang et al., 2020), which specif-
ically improves its performance in MRC. These
PLM-based models mostly increase the scale of
model parameters or improve the attention mech-
anism through their structure, but they still lack
reasoning-level analysis and evidence support due
to them using end-to-end learning methods (Chen
and Yih, 2020).

2.2 Coreference Resolution
Coreference resolution is the task of retrieving all
references in text that refer to the same entity. With
the development of deep learning, the neural net-
work has been gradually used to solve coreferenc-
ing, such as CoNLL-2012 (Pradhan et al., 2012),
in recent years (Xu and Choi, 2020; Kirstain et al.,
2021). Lee et al. (Lee et al., 2017) first applied the
LSTM (Sak et al., 2014) network to coreference res-
olution; it can extract referential dependencies di-
rectly from text. Joshi (Joshi et al., 2019) provided
a PLM baseline for coreference resolution through
BERT. Joshi also provided SpanBERT Joshi et al.
(2020), which enhanced the PLM’s performance,
especially in coreference extraction.

In this paper, we use AllenNLP Gardner et al.
(2018)’s framework as an implementation of the
approach by Lee et al.(Lee et al., 2017) with span-
BERT for textual word embedding, and we achieve
high-precision coreference extraction from a con-
versation history and article context.

2.3 Machine Reading Comprehension
Current machine reading comprehension (MRC)
tasks can be classified into single-turn and multi-
turn types, depending on whether the question-
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answering relies on the conversation history. To
tackle single-turn MRC such as SQuAD (Rajpurkar
et al., 2018), many models based on semantic
matching have been proposed, such as BiDAF (Seo
et al., 2017), DrQA (Chen et al., 2017), (Lin et al.,
2018), QANet (Yu et al., 2018), and BERT (Devlin
et al., 2019), for MRC.

However, for multi-turn MRC like CoQA
(Reddy et al., 2019) and QuAC (Choi et al., 2018),
conversation-based questions and answers are intro-
duced to enhance the connection between questions
(known as CMRC (Liu et al., 2019a)). The ambi-
guity of a question increases (Min et al., 2020) due
to the addition of a conversation history. Thus, to
predict the answer Âi for the current question Qi,
the model should not only have to comprehend the
article context C but also the conversation history
Hi from the beginning (Q1, A1) to the previous
turn (Qi−1, Ai−1) for integration.

Hi = {Q1, A1, ..., Qi−1, Ai−1} (1)

Âi = argmax(P (Ai|Qi, C,Hi)) (2)

For multi-turn MRC, several works (Huang et al.,
2019; Yeh and Chen, 2019; Qu et al., 2019; Song
et al., 2018) have incorporated reasoning repre-
sentation to capture a conversation history’s em-
bedding. In comparison, approaches like question
rewriting (QR) (Papakonstantinou and Vassalos,
1999) aim to break down multi-turn MRC into
single-turn subtasks to minimize the complexity
of multi-turn MRC (Vakulenko et al., 2021). CA-
NARD (Elgohary et al., 2019) rewrites QuAC’s
questions and introduces this rewriting to the QR
task. QR models (Vakulenko et al., 2021; Lin et al.,
2020) rewrite current questions to incorporate a
conversation history. However, due to the variable
length of a conversation history, such models still
have limitations in precisely resolving the corefer-
ence in questions.

3 Propsed Methods

In this section, we describe the architecture of our
methods as an enhanced PLM component, as illus-
trated in Figure 2. The model contains two stages.
(1) We construct a coreference graph from textural
information towards solving the pronoun’s refer-
ential entity in a question. (2) We use our two
methods, evidence-enhanced and the fusion model,
to integrate a referential entity’s information into

PLMs using textual and structural levels, respec-
tively.

3.1 Coreference Graph

Inspired by the previous works (Song et al., 2018;
Bastings et al., 2017; Dhingra et al., 2018), we
introduce graph structures for the anaphora in ques-
tions. Specifically, our method uses the approach
by Lee et al. (Lee et al., 2017) with SpanBERT
word embedding to precisely extract all corefer-
ences in text and organize them into graph struc-
tures. Additionally, we propose modeling the con-
versation history and article context separately in
structures to fully use the graph information.

In the article context part, because there may
be multi-identical pronouns referring to different
entities in a context (e.g., “he” could refer to two
males in the same article context), the current sen-
tence number (order number) is kept after entities
to ensure their uniqueness. As shown in Figure 3
with different numbers. To organize the entities
into a graph, all of the anaphors (pronouns) are
connected to the initially-occurring antecedent (ref-
erential entity). In this way, the entire context can
be processed into a graph with multiple clusters,
and each cluster holds a unique referential entity,
as illustrated in Figure 3 in different colors.

In the conversation history part, to avoid multi-
identical pronouns, the Qi label for the i-th ques-
tion and Ai label for the i-th answer are added
behind an entity in a conversation history. In the
construction part, considering the time-sequence
nature of a conversation history, we use a conversa-
tion history’s order sequences (Q1, A1, Q2, A2, ...)
to connect these entities into a queue structure.

3.1.1 Coreference Graph Construction
As illustrated in Figure 3, this procedure can extract
the coreference information from text into a coref-
erence graph. First, we extract reference words
with relevant number labels as referential entities.
In this way, each reference word can be classified
into various clusters (shown in different colors in
the top half of Figure 3). In the graph construction
of the article context part, we use the first referen-
tial entity in one cluster and the initially-occurring
antecedent as the head node. We connect all the
remaining referential entities in the cluster to the
head node. For the conversation history part, we
connect the referential entities in the cluster in a
queue in the order sequence (Q1, A1, Q2, A2, ...).
Accordingly, this step is repeated for every cluster
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until each reference word has been processed into
a graph structure as a unique entity.

3.1.2 Antecedent Retrieval
Antecedent retrieval is a process of querying the ref-
erential entity of a target pronoun through a coref-
erence graph. For retrieval from an article context,
the target pronoun and the sentence’s order index
are considered to form a query entity. When the
node of the query entity is found, it is used as the
starting node for a graph search until a non-pronoun
entity is found as a referential entity for the result.

3.2 Method No.1: Evidence-Enhanced

We learned from previous studies (Zhou et al.,
2019; Ding et al., 2019) that additional evidence
is essential for a PLM’s logical comprehension.
Therefore, we present textual reformulation meth-
ods for resolving the referential dependency of cur-
rent pronouns. As shown in Figure 2, after re-
trieving the referential entity (“she” refers to “Jes-
sica”), the model needs to obtain this information
for the current question Qi. In PLMs like BERT
(Devlin et al., 2019), the CMRC typically defines
the model’s input as the concatenation of three seg-
ments. Specifically, given a context C, the input for
BERT is “[CLS]Hi[SEP]Qi[SEP]C.” To ensure
that new information is introduced with as little
impact as possible for the PLM input, we propose
two textual-level methods:

• Evidence Generator (EG): Generating infer-
ential sentences to solve coreference on the
basis of textual rules (like “She” is “Jessica”)
and then adding the inferential sentence as evi-
dence before the question. The input structure
is “[CLS]Hi[SEP]EGQi[SEP]Qi[SEP]C.”

• Enhanced Question (EQ): Reformulating
a question by replacing the pronouns in
the question with referential entities to
create an enhanced question and replac-
ing the enhanced question with the origi-
nal one as input. The input structure is
“[CLS]Hi[SEP]EQQi[SEP]C.”

3.3 Method No.2: Fusion Model

Inspired by Qiu et al. Qiu et al. (2019), we propose
using the graph neural network to extract a corefer-
ence graph’s features. We fuse these graph features
with sequence features from the PLM to enhance
the PLM’s coreference reasoning ability.

3.3.1 Embeding Fusing
We want the model to learn both the graph and
sequence features of an entity during computa-
tion. Additionally, we hope that the model can
balance the two kinds of features by using learn-
able weights. Therefore, the final embedding
FinalEmbk of all entities k in a coreference graph
is calculated as follows ([A : B] means to concate-
nate the two vectors A and B in a row, and ⊙ means
the Hadamard product).

wk = ReLU(W × [PLMk : GNNk]) (3)

FinalEmbk = wk⊙PLMk+(1−wk)⊙GNNk

(4)
The computed final embedding is passed through

the fully connection layer to compute the answer
prediction for the current question.

4 Experiment Setup

4.1 Datasets Description

CoQA (Reddy et al., 2019) consists of 127K
questions and answers from documents in 5 do-
mains (Children, Literature, Middle& High School
English Exams, CNN News, Wikipedia). The
question-answering can be divided into extractive
and non-extractive types (Niu et al., 2020). Sim-
ilar to SQuAD, the extractive type selects a span
from the context for the final answer to the ques-
tion. The non-extractive type is defined as choices
from Yes/No/Unknown for answering. We used
two datasets to perform this experiment:

• CoQA all: The complete CoQA dataset.

• CoQA pronoun-containing (38% of CoQA
all): Used to evaluate the model’s perfor-
mance in coreference resolution for anaphora.
Samples in which questions contained pro-
nouns from CoQA were extracted to form a
partial dataset.

Compared with the evidence-enhanced method,
the fusion model does not need the input of the
model to be changed for learning. Therefore, we
additionally used the CoQA-all dataset to evaluate
the overall performance of the model.

All evaluations were conducted using the over-
all F1 score by using CoQA’s official evaluation
script1.

1https://stanfordnlp.github.io/coqa/

76



Figure 3: An example of converting conversation history and article context into the coreference graph. The same
color represent entities has same referring entity, also in the same cluster as graph.

4.2 SpanBERT-based Coreference Extraction

We applied the coreference resolution model from
AllenNLP2. This model adopts Lee et al. (Lee
et al., 2017)’s approach to extracting the corefer-
ences in clusters. Rather than using GloVe’s word
embedding in the initial model, SpanBERT (Joshi
et al., 2020) for word embedding was used due to
its superiority on the task of extraction.

4.3 Baseline of PLMs

4.3.1 BERT
Due to the multi-turn characteristic that CMRC
retains compared with MRC tasks, the conversation
history before Qi should be considered as input
into the model. In this experiment, a BERT-base-
uncased (Devlin et al., 2019) fine-tuned by using
all CoQA was used as our baseline model. It
takes a concatenation of three segments as input
(length of conversation history is 2). Specifi-
cally, given a context C, the input for BERT is
[CLS](Qi−2, Ai−2), (Qi−1, Ai−1)[SEP]Qi[SEP]C,
in which “[CLS]” is a classifier for
“Yes/No/Unknown/Span” for CoQA’s non-
extractive questions.

4.3.2 RoBERTa
On the basis of BERT model’s architecture,
RoBERTa (Liu et al., 2019b) removes next sen-
tence prediction and possesses better robustness

2https://demo.allennlp.org/coreference-resolution

through modifications and pre-training with larger
data. RoBERTa can exceed almost all perfor-
mances compared with the BERT model. In the
experiment, we adopted a RoBERTa-base-uncased
with the same training configuration as BERT. We
found that RoBERTa achieves remarkable scores
on the CoQA pronoun-containing dataset, which
means that the capability RoBERTa holds towards
coreference resolution is comparably higher than
BERT accordingly.

4.4 GNN Embedding Algorithms

4.4.1 Graph Attention Networks
The graph attention network (GAT) (Velickovic
et al., 2017) learns the structural features of graphs
from the spatial domain through a multi-headed
attention mechanism. In this experiment, we used
PyTorch Geometric3 as the implementation of GAT
graph embedding, and the number of multi-heads
was set to 8.

4.4.2 Graph Convolutional Network
The graph convolutional network (GCN) (Kipf and
Welling, 2017) learns the structural features of
graphs from convolution layers. It can be used to
study the properties of a graph from the eigenvalues
and eigenvectors of a Laplacian matrix. GCN has
been successful in processing graph data by extract-
ing structure-aware features. In this experiment, we

3https://pytorch-geometric.readthedocs.io/en/latest/
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CoQA pronoun-containing dataset
Model Approach Child. Liter. M&H. News Wiki Overall

baseline 76.0 70.0 72.9 73.8 77.7 73.9
+QR 60.7 66.1 69.0 70.2 73.6 69.7
+Hist.+EG 75.2 72.0 75.4 76.2 81.1 75.7
+Hist.+EQ 76.1 74.0 76.2 76.9 80.0 76.5
+Cont.+EG 77.8 72.6 76.2 76.1 80.3 76.4
+Cont.+EQ 75.8 72.7 74.2 75.3 80.7 75.5
+Hist.&Cont.+EG 77.1 74.8 75.0 76.0 81.0 76.5

BERT-base

+Hist.&Cont.+EQ 76.8 72.4 75.2 75.3 79.2 75.6
RoBERTa-base baseline 82.5 80.0 81.6 83.1 84.1 82.1

+Hist.+EQ 80.9 77.9 81.2 80.5 84.7 80.8
+Hist.&Cont.+EG 82.4 80.4 81.1 83.4 84.4 82.2
+Hist.&Cont.+GCN 83.5 80.4 81.5 83.7 85.9 82.8
+Hist.&Cont.+GAT 83.0 79.7 82.6 82.9 85.4 82.6

CoQA all
RoBERTa-base baseline 81.1 79.3 80.4 82.8 83.9 81.5

+Hist.&Cont.+GCN 82.3 80.0 80.4 84.2 84.6 82.3
+Hist.&Cont.+GAT 81.0 79.2 80.7 82.9 84.5 81.7

Table 1: Comparison of baseline method with QR model, evidence-enhanced method and fusion model for CoQA.
“EG” and “EQ” denote evidence generator and enhanced question, respectively. For coreference graph in antecedent
retrieval, “Hist.” denotes using conversation history part, “Cont.” denotes using article content part, “Hist.&Cont.”
denotes using both. “GCN” and “GAT” denote fusion model using graph embedding algorithms of GCN and GAT,
respectively.

used PyTorch Geometric as the implementation of
GCN graph embedding.

4.4.3 Initialization
For all nodes contained in the coreference graph,
we initialize the node features using embeddings at
the token level Ei generated through PLM. Here,
we compute the average value for each node feature
Fi for initialization. e.g.. the node “the girl” is
composed of two tokens, “the” and “girl,” and node
feature Fthe:girl for initialization can be calculated
as follows.

Fthe:girl =
1

2
(Ethe + Egirl) (5)

4.5 Details

All experiments were implemented on PyTorch 4.
BERT and RoBERTa were implemented by using
the Huggingface Transformers library 5. The ap-
proach by Lee et al. (Lee et al., 2017) was im-
plemented through the pre-trained model “coref-
spanbert-large” from AllenNLP. We used three 11-
GB GPUs (GTX 1080Ti), a batch size of 24 for

4https://pytorch.org/
5https://huggingface.co/docs/transformers/index

BERT, and a batch size of 10 for RoBERTa in all
experiments.

BERT and RoBERTa were utilized as our base-
line, represent the basic and advanced PLMs re-
spectively. To compare our approaches with oth-
ers, we applied Question Rewriting (QR) model
(Lin et al., 2020) using T5 (Raffel et al., 2020),
trained on CANARD (Elgohary et al., 2019). To
identify the effectiveness of coreference graph, we
proposed to use information from different parts of
coreference graph as comparisons.

5 Results & Analysis

The results are shown in Table 1, which presents
a performance comparison of the baseline ap-
proaches, end-to-end QR, and our proposed meth-
ods integrated with different parts of the corefer-
ence graph. We can see that compared with the
baselines, both the evidence-enhanced method and
fusion model method improved the model’s perfor-
mance in different categories (Child., Liter., M&H.,
News, Wiki, and Overall).

Specifically, the combination of the EG with the
coreference graph (Hist.& Cont.) improved the
overall F1 score by 2.6 on the BERT baseline and
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BERT-base
Baseline Our EG F1>0 F1 ≥0.5 F1=1

False False 342 503 997
True False 145 175 180
False True 219 263 244
True True 2356 2121 1641

Total: 3062

Table 2: Analysis of results for all answers for CoQA
pronoun-containing test dataset (3062 samples in total).
Comparison of baseline BERT with our best EG method
“BERT+ EG + Hist.&Cont.” “True” and “False” indi-
cate whether each answer produced by QA model was
correct or incorrect, respectively, in accordance with F1
thresholds provided in right-side columns.

by 0.1 on the RoBERTa baseline. Therefore, we
concluded that while dealing with anaphora’s coref-
erence resolution, both the EG and EQ were effec-
tive as enhanced components of the PLM baseline
model with BERT.

Comparing EG and EQ approaches comprehen-
sively for BERT and RoBERTa, the EG one had
generally higher scores. One possible reason is
that generating additional evidence behind a ques-
tion as input maintains the integrity of the original
question. Although the EQ approach also achieved
relevant performance, the textual substitution of
pronouns may alter the intention of the question
and mislead the model to make erroneous answer
predictions.

To measure the effectiveness of the evidence-
enhanced approach for each question, we com-
pared the F1 scores of the answers produced by the
baseline (BERT) and our evidence-enhanced model
with the best performance (“EG+hist.&cont.,” as
shown in Table 2). “True” and “False” indicate
whether the answer predicted by the model was cor-
rect or incorrect, in accordance with the F1 thresh-
olds provided in the right-side columns. As shown
in Table 2, the second row reflects the case where
our model got an erroneous answer when the base-
line’s answer was correct, which can be interpreted
as getting an erroneous referential entity of the
target pronoun, thus leading to an erroneous predic-
tion. The third row indicates that the answer of our
model was correct and that of the baseline’s was
wrong. Compared with the second row, the third
row shows the effectiveness of our model: introduc-
ing the correct referential entity and enhancing the
model to output the correct answer. Additionally,
in the third row, with the rise of the F1 thresh-

old, the number increased from F1 > 0 to F1 ≥
0.5, which means that our model slightly corrected
the baseline’s answer from completely wrong into
closer to correct. However, from the decline from
F1 ≥ 0.5 to F1 = 1, we can infer that our model
still has limitations in making fully correct answer
predictions.

From the results for the fusion model, we found
that the fusion model achieved a further improve-
ment (by up to 0.7 on RoBERTa) compared with
the baseline and evidence-enhanced methods. This
model also showed improvement on the CoQA-all
dataset, which contains samples that are not needed
for coreference resolution (without pronouns in
questions), compared with the baseline. This in-
dicates that the fusion model can effectively use
coreference graph information. It can solve coref-
erence resolution and maintain the ability to solve
no-coreference questions. Therefore, compared
with the evidence-enhanced approach, the fusion
model has higher robustness.

Through comparing the two different graph em-
bedding methods, GAT and GCN, we found that
GCN generally outperformed GAT in terms of
score in each category. We assume one reason is
that the processed graphs always hold the same
structure (a vertex containing multiple one-hop
neighbor nodes), and such a simple structure is
not adequately learned by GAT’s multi-head at-
tention, which is suitable for capturing features
from the spatial domain. In contrast, GCN cap-
tures the graph features of each neighbor by using
convolution layers, so it performed better in this
experiment.

6 Case Study

We investigated how our approaches improve the
coreference reasoning ability of the RoBERTa base-
line approach. To compare the differences in an-
swer prediction, we used RoBERTa-base as the
baseline. RoBERTa-base + Hist.&Cont. + EG
had the best performance in Table 1 as the evi-
dence generator (EG), and RoBERTa-base + Fu-
sionMd.(+GCN) had the best performance as the
fusion model. We selected several specific cases
from CoQA for elaboration.

An example is shown in Figure 4. In this exam-
ple, the coreference graph resolves that “he” refers
to “Joseph Aloisius Ratzinger.” Because of the
absence of coreference resolution, the baseline in-
correctly predicted the answer at the wrong place.
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#Example
Article context C:
...Ratzinger established himself as a
highly regarded university theologian
by the late 1950s and was appointed a
full professor in 1958...
Conversation History Hi:
...
Qi−1: Did he have a lot of experience as
a pastor?
Ai−1: No.
Current Question Qi: What was his
occupation immediately preceding his
papacy?
Resolution in coreference graph:
his = Joseph Aloisius Ratzinger
Answer prediction:
Fusion model: Theologian.
Evidence-Enhanced: Academic and
professor of theology.
Baseline: A major figure on the Vatican
stage.
Gold answer: Theologian.

Figure 4: Answer predictions from different CMRC
models.

EG resolved the referential dependencies, so the
prediction’s meaning was close to the correct an-
swer. However, the fusion model could integrate
the coreference information and predict the answer
span accurately.

7 Conclusion

In this paper, we proposed the coreference graph,
which can integrate coreferences from text into
a graph structure. To use the information re-
trieved from a coreference graph, we introduced
the evidence-enhanced method, which comprises
two textual-level coreference resolution approaches
to leverage BERT’s performance on CMRC. How-
ever, the results showed that the improvement for
RoBERTa is still limited. Therefore, we proposed
the fusion model, using graph neural networks to
incorporate the coreference graph into PLM struc-
ture. In comparison with the baseline and evidence-
enhanced methods, the fusion model showed fur-
ther improvement on RoBERTa, maintaining rela-
tively higher robustness when learning coreference
resolution. We confirmed that in conversational

reading comprehension, a graph-structured repre-
sentation of the article context and conversational
history can both be an information supplement for
answering a current question, especially with dif-
ferent PLMs. Rather than the end-to-end method
in PLMs, our approaches can generate readable
text as evidence when answering a question, which
strengthens the interpretability of PLMs.
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