Workshop on Processing Language Variation: Digital Armenian (DigitAm)

Editors:
Victoria Khurshudyan, Nadi Tomeh, Damien Nouvel, Anaid Donabedian, Chahan Vidal-Gorene
Preface

This volume includes the proceedings of the workshop Processing Language Variation: Digital Armenian held in Marseille, France, June 20, 2022. It is organized by the team of DALiH project: Digitizing Armenian Linguistic Heritage (DALiH): Armenian Multi-variational Corpus and Data Processing, more particularly by the three research centres: Structure et Dynamique des Langues (SeDyL)/INALCO, Laboratoire d’Informatique de Paris-Nord (LIPN) /Université Sorbonne Paris Nord and Équipe de Recherche Textes, Informatique, Multilinguisme (EERTIM)/INALCO. The workshop is in line with the international conference Digital Armenian first held in Paris, INALCO, in 2019.

The workshop welcomed papers on exploring the problems connected with language variation processing through interoperability of NLP and linguistic resources and tools in particular (but not limited to) for multi-variational under-resourced languages, multi-variational corpora designing and functionality, the evaluation of language scalar variation and the degree of interoperability relevance, language variety identification and distance measuring etc.

A significant gap exists for the availability of NLP resources for different languages with a few languages having quasi-complete NLP coverage and many others being under-resourced (or no-resourced at all). Besides, the under-resourced languages can often have variation either at synchronic (dialects, oral vernacular varieties) or diachronic level (ancient variants of a target language) for which resources can be completely absent especially if no written tradition exists for a target variety. The workshop will focus on processing and reutilisation of NLP resources for under-resourced languages with variation in general, with a particular attention to the Armenian language data.

Current state-of-the-art NLP approaches open up remarkable perspectives not only to exploit the available NLP resources of the well-resourced languages for the under-resourced ones, but also to recycle the existing resources of a target language for its varieties (multi-variational resources) instead of processing target language/variety-based new NLP resources from scratch.

The existing resources are often heterogeneous in terms of accessibility, formatting, linguistic background and they are usually specialized in only one type of a tool/resource (scanned text and/or plain-text databases, dictionaries, annotation models/tools, annotated corpora and datasets etc.). Therefore, one of the important issues is to work out approaches and standards of harmonization and interoperability of the existing data and resources.

Overall, six papers were selected for the workshop. Two papers focus on different aspects of Classical and Middle Armenian linguistic data processing (Analyse Automatique de l’Ancien Arménien. Évaluation d’une méthode hybride « dictionnaire » et « réseau de neurones » sur un Extrait de l’Adversus Haereses d’Irénée de Lyon by Kepeklian and Kindt; and Describing Language Variation in the Colophons of Armenian Manuscripts by Van Elverdinghe and Kindt) and one paper explores the variational identification for Classical Armenian and two modern standards (Dialects Identification of Armenian Language by Avetisyan). Modern Armenian standards are targeted in the paper presenting a morphological transducer for Modern Western Armenian (A Free/Open-Source Morphological Transducer for Western Armenian by Dolatian et al.), and another on Eastern Armenian National Corpus (Eastern Armenian National Corpus: State of the Art and Perspectives by Khurshudyan et al.). Finally, one paper explores the possibilities of Automatic Speech Recognition model (ASR) model processing for modern Armenian varieties (Towards a Unified ASR System for the Armenian Standards by Chakmakjian and Wang).

Workshop Organizers

The project DALiH is funded by French National Research Agency ANR-21-CE38-0006.
Organizers

Victoria Khurshudyan – Inalco, Sedyl, CNRS
Anaid Donabedian – Inalco, Sedyl, CNRS
Chahan Vidal-Gorene – École Nationale des Chartes-PSL
Nadi Tomeh – LIPN, Université Sorbonne Paris Nord
Damien Nouvel – INALCO, ERTIM

Program Committee:

Victoria Khurshudyan, Inalco, Sedyl, CNRS, IRD
Anaid Donabedian, Inalco, Sedyl, CNRS, IRD
Chahan Vidal-Gorene, École Nationale des Chartes-PSL
Nadi Tomeh, LIPN, Université Sorbonne Paris Nord
Damien Nouvel, Inalco, ERTIM
Emmanuel Cartier, LIPN, Université Sorbonne Paris Nord
Thierry Charnois, LIPN, Université Sorbonne Paris Nord
Ilaine Wang, Inalco, ERTIM
Vladimir Plungian, Vinogradov Russian Language Institute, Russian Academy of Sciences
Timofey Arkhangelskiy, University of Hamburg
Table of Contents

A Free/Open-Source Morphological Transducer for Western Armenian
Hossep Dolatian, Daniel Swanson and Jonathan Washington
1

Dialects Identification of Armenian Language
Karen Avetisyan
8

Analyse Automatique de l’Ancien Arménien. Évaluation d’une méthode hybride « dictionnaire » et « réseau de neurones » sur un Extrait de l’Adversus Haereses d’Irénée de Lyon
Bastien Kindt and Gabriel Kepeklian
13

Describing Language Variation in the Colophons of Armenian Manuscripts
Bastien Kindt and Emmanuel Van Elverdinghe
21

Eastern Armenian National Corpus: State of the Art and Perspectives
Victoria Khurshudyan, Timofey Arkhangelskiy, Misha Daniel, Vladimir Plungian, Dmitri Levonian, Alex Polyakov and Sergei Rubakov
28

Towards a Unified ASR System for the Armenian Standards
Samuel Chakmakjian and Ilaine Wang
38
Conference Program

2:00pm–2:20pm Opening with a presentation on the project of Digitizing Armenian Linguistic Heritage (DALiH): Armenian Multivariational Corpus and Data Processing
Victoria Khurshudyan

Session 1

2:20pm–2:40pm A Free/Open-Source Morphological Transducer for Western Armenian
Hossep Dolatian, Daniel Swanson and Jonathan Washington

2:40pm–3:00pm Dialects Identification of Armenian Language
Karen Avetisyan

3:00pm–3:20pm Analyse Automatique de l’Ancien Arménien. Évaluation d’une méthode hybride « dictionnaire » et « réseau de neurones » sur un Extrait de l’Adversus Haereses d’Irénée de Lyon
Bastien Kindt and Gabriel Kepeklian

3:20pm–3:40pm Describing Language Variation in the Colophons of Armenian Manuscripts
Bastien Kindt and Emmanuel Van Elverdinghe

3:40pm–4:00pm Eastern Armenian National Corpus: State of the Art and Perspectives
Victoria Khurshudyan, Timofey Arkhangelskiy, Misha Daniel, Vladimir Plungian, Dmitri Levonian, Alex Polyakov and Sergei Rubakov

Session 2

4:30pm–4:50pm Towards a Unified ASR System for the Armenian Standards
Samuel Chakmakjian and Ilaine Wang

4:50pm–5:50pm Round table

5:50pm–6:00pm Closing remarks
Viktoria Khurshudyan
A Free/Open-Source Morphological Transducer for Western Armenian

Hossep Dolatian, Daniel Swanson, Jonathan Washington
Stony Brook University, Indiana University, Swarthmore College
Stony Brook, NY 11794; Bloomington, IN 47405; Swarthmore, PA 19081
hossep.dolatian@alumni.stonybrook.edu, dangswan@iu.edu, jonathan.washington@swarthmore.edu

Abstract
We present a free/open-source morphological transducer for Western Armenian, an endangered and low-resource Indo-European language. The transducer has virtually complete coverage of the language's inflectional morphology. We built the lexicon by scraping online dictionaries. As of submission, the transducer has a lexicon of 75K words. It has over 90% naive coverage on different Western Armenian corpora, and high precision.

Keywords: finite-state morphology, two-level morphology, transducer, computational morphology, low-resource language, Western Armenian

1. Introduction
This paper presents the first known publicly available morphological transducer for Western Armenian (hyw), an endangered Indo-European language currently spoken by an estimated 1 million people (Eberhard et al., 2022). A morphological transducer is a computational tool that maps between forms and analyses, able to perform both morphological analysis and morphological generation. For example, the form փառերեն [pʰɑɾeɾeŋ] ‘the words’ may be analyzed as փառերեն-ը [-pl>abl>def], whereas generation goes the other direction. The morphological transducer reported on in this paper has production-quality coverage and was developed entirely by hand, with some automated support in the form of scraping dictionaries.

Section 2 overviews Western Armenian and positions the present work among other Armenian text processing tools. Section 3 details the implementation of the transducer. Section 4 presents an evaluation of the transducer. Section 5 presents thoughts on future work, and Section 6 focuses on cross-dialectal support. Section 7 concludes.

2. Background on Armenian and language tools
Armenian belongs to an independent branch in the Indo-European family. Armenian is pluricentric with two standard lects (Western and Eastern) and multiple non-standard lects (Adjarian, 1999). The two standard lects share substantial similarities but have many substantial differences in phonology, morphology and syntax (Cowe, 1992; Donabédian, 2018). Both lects are written in the Armenian script. Western Armenian uses a more conservative spelling system than Eastern Armenian (Sanjian, 1996; Dum-Tragut, 2009).

Eastern Armenian is the official language of Armenia, while Western Armenian developed as a koiné lect among ethnic Armenians in the Ottoman Empire (Sayeed and Vaux, 2017). After the Armenian Genocide (1915–1917), Western Armenian became a largely diasporic language that is spoken across communities in the Middle East, Europe, the Americas, and Australia. Western Armenian is classified as an endangered language by UNESCO. Depending on the country, Western Armenian communities have different degrees of language maintenance, language shift, or endangerment (Jebjian, 2007; Al-Bataineh, 2015; Chahinian and Bakalian, 2016). In terms of pre-existing resources, Armenian is considered a low-resource language with few computational resources (Megerdoumian, 2009). There are more resources for Eastern Armenian than for Western. For example, Eastern Armenian has the EANC corpus (Khurshudian et al., 2009), a spoken corpus (Skopeteas et al., 2015), corpus-processing tools like UniParser (Arkhangelskiy et al., 2012), a treebank (Yavrumyan et al., 2017; Yavrumyan, 2019), and various Deep Learning tools from the YereVA NN3 research group (Ghukasyan et al., 2018; Arakelyan et al., 2018). Eastern Armenian is also part of the Universal Morphology schema (Kirov et al., 2018; Chiarcos et al., 2018; McCarthy et al., 2020).

In contrast, there are few if any significant resources for Western Armenian. There is report of a two-level finite-state system (Lonsdale and Danielyan, 2004) but it does not appear to be available. There are some small corpora of Western Armenian (Donabédian and Boyaciglu, 2007; Khachatryan, 2012; Khachatryan, 2013; Silberztein, 2016), and a new UD treebank (Yavrumyan, 2019). Complete verbal paradigms are also available (Boyaciglu and Dolatian, 2020). Thus any contribution to computer processing of Western Armenian currently

1The source code for the transducer is available at https://github.com/apertium/apertium-hyw, and the transducer may be used online at https://beta.apertium.org/#analysis?alang=hyx_hyw.
2There are likewise recent resources for Classical Armenian (Vidal-Gorène and Decours-Perez, 2020; Vidal-Gorène and Kindh, 2020), which have been recently applied to the modern lects (Vidal-Gorène et al., 2020): https://calfa.fr/
3http://yerevann.com/
has the potential to make a large impact. Note that Vidal-Gorène et al. (2020) develop a quite workable model of Eastern and Western Armenian using Deep Learning. However, this paper sees how far we can go with a rule-based system for the following reasons. First, rule-based methods are more interpretable than neural-based methods, so the designer of the analyzer can directly control the behavior of the analyzer. Second, interpretability allows linguists to directly analyze the analyzer to further their own pen-and-paper analyses (Karttunen, 2006); this is quite important for under-studied languages. Third, rule-based and neural-based methods aren’t in true competition with each other because they have different practical uses. Thus, the rule-based analyzer described here can hypothetically integrate with a neural-based analyzer to cover any gaps (cf. finite-state covering grammar in text normalization; Zhang et al. (2019)).

3. Methodology and implementation

3.1. Software

This transducer was written for use with HFST (Lindén et al., 2011) using the two-level framework (Koskenniemi, 1984; Beesley and Karttunen, 2003; Roark and Sproat, 2007). The lexicon and morphotactics (combinatorial patterns of morphology) were implemented using lexd (Swanson and Howell, 2021), which differs from other formalisms in that it is designed to support non-suffixational patterns, like prefixes. The morphophonology (phonological/orthographic alternations) was implemented using twolc. The two separate transducers (morphotactic and morphophonological) are compose-intersected to create both a generator and an analyzer. The bulk of the work was done between October 2020 and January 2021.

3.2. Paradigms

In terms of morphology, Western Armenian is largely agglutinative and it is primarily suffixing. There are some inflectional and derivational prefixes. Verb inflection is primarily agglutinative and synthetic with different suffixes for tense, aspect, agreement, mood, and valency. Verbs are divided into different conjugation classes based on suffix allomorphy, root allomorphy, and other irregularities (Boyacioglu, 2010). For these reasons, we chose to use the “infinitive” forms of verbs as the lemmas, instead of the morphological stems. Similarly, noun inflection is primarily agglutinative with different suffixes for number, case, definiteness, and possession (Hagopian, 2005). To illustrate, we present two morphological forms of a verb in (1) and (2), showing orthographic form, IPA pronunciation, a morpheme-by-morpheme breakdown and gloss, an English translation of the form, and the analysis returned by the transducer.

(1) սիրել [siɾel]
 sir -e -1
 like TH INF
 ‘to like’
 սիրեցին<cv><tv><ger>

(2) ձգուիլ [dʒɑɾmʰɑ]
 sir -e -i -n
 like TH FTV PST 3PL
 ‘they liked’
 ձգեցին<cv><tv><past><pret><p3><pl><indic>

The analyses returned by a transducer differ from traditional linguistic analyses in that morpheme breaks are not provided; tags are used instead of abbreviations; word categories (or parts of speech), here Verb or <v>, are annotated; and subcategories of words, here TRANSITIVE or <tv>, are annotated. This particular transducer also differs in that the infinitive is used as the lemma of a verb instead of the morphological stem, and some grammatical labels are different. The tagset used is that provided by Apertium.

To construct this transducer, morphological paradigms were gathered via a combination of pre-existing teaching grammars of Western Armenian (Boyacioglu, 2010; Hagopian, 2005), using cognates from Eastern Armenian grammars (Dum-Tragut, 2009), and native intuition. All paradigms were manually coded into the lexd format. For an irregular word like սիրել [dʒɑɾmʰɑ] ‘road’, the analyzer analyses both standard irregular forms like սիրել, [dʒɑɾmʰɑ-aj] (genitive), but also colloquial regularized forms like սիրել [dʒɑɾmʰɑ-aj]. However, the generator only produces the standard form. We added rules to generate some productive derivational processes as well, such as causativization, passivization, and some productive word-forming suffixes like the suffix -որէն ‘-oren’ (forms adverbs from adjectives, roughly equivalent to the English suffix -ly).

For complex verbs like causatives and passives, we adopted a dual approach to lemmatization and analysis. If the dictionary listed a passive verb like երգել [eɾgəl-] ‘to be sung’ (genitive), we derive them at run-time from the lemma of the active. Similar annotation and strategies are used for causatives.

3.3. Lexicon

The lexicon was at first compiled by scraping an Armenian-English dictionary (Kouyoumdjian, 1970) from Nayiri. The dictionary contained at least 60k words.8

7Glossing conventions and abbreviations are based on Leipzig standards: https://www.eva.mpg.de/lingua/resources/glossing-rules.php

8https://wiki.apertium.org/wiki/Symbols

7http://nayiri.com/
The dictionary items were catalogued into the right conjugation or declension class. A sample of common Armenian names was gathered from lists of names on different websites. Table 1 provides a breakdown of the lexicon.

<table>
<thead>
<tr>
<th>category</th>
<th>entries</th>
<th>tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>39006</td>
<td><></td>
</tr>
<tr>
<td>Adjective</td>
<td>18617</td>
<td><adj></td>
</tr>
<tr>
<td>Verb</td>
<td>7441</td>
<td><></td>
</tr>
<tr>
<td>Adverb</td>
<td>1895</td>
<td><adv></td>
</tr>
<tr>
<td>Given name</td>
<td>4848</td>
<td><np><ant></td>
</tr>
<tr>
<td>Surname</td>
<td>2052</td>
<td><np><cog></td>
</tr>
<tr>
<td>Location name</td>
<td>1183</td>
<td><np><top></td>
</tr>
<tr>
<td>Other name</td>
<td>22</td>
<td><np><al></td>
</tr>
<tr>
<td>Pronoun</td>
<td>415</td>
<td><prn></td>
</tr>
<tr>
<td>Adposition</td>
<td>130</td>
<td><pr>,<post></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>81</td>
<td><abbr></td>
</tr>
<tr>
<td>Conjunction</td>
<td>48</td>
<td><conj></td>
</tr>
<tr>
<td>Interjection</td>
<td>49</td>
<td><ij></td>
</tr>
<tr>
<td>Numerical</td>
<td>41</td>
<td><num></td>
</tr>
<tr>
<td>Particle</td>
<td>9</td>
<td><particle></td>
</tr>
<tr>
<td>Total</td>
<td>75837</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Current lexicon by part-of-speech

3.4. Morpho-phonology

Some morpho-phonological processes are reflected in the orthography. These were implemented through use of special symbols in the morphological side of the morpho-phonetic transducer (lexd). Such symbols encode allomorphy and other morphophonological processes. These diacritics were then used in the morphophonological transducer (twol) to trigger the appropriate processes.

As an example, the definite suffix is [a] after consonants (3a) and [n] after vowels (3b). However, with stems ending in the glide letter j · (a consonant), the pattern is slightly different: monosyllabic nouns of this sort (3c) behave as expected: the glide is pronounced and the definite suffix is [a]. But in multisyllabic stems ending in j · (3d), the glide letter is silent when not before a vowel, and is not represented orthographically when before a consonant. Hence, in the definite form, the glide letter is not used, and the suffix [n] is added.

(3) Allomorphy of the definite suffix

a. կար 〈p·a·r· 〉 [p·a·r] 'word'
 կարե 〈p·a·r·e· 〉 [p·a·r·e] 'the word'
b. կարե 〈a·d·a· 〉 [a·d·a] 'cat'
 կարե 〈a·d·an· 〉 [a·d·a·n] 'the cat'

c. ենե 'xoj· [xoj] 'ram'
 ենե 'xoj·a· [xoj-a] 'the ram'

d. ծառայ 〈đ·a·ra· 〉 [đ·a·ra] 'servant'
 ծառայ 〈đ·a·ra·n· 〉 [đ·a·ra·n] 'the servant'

In our code, the definite suffix was generated in the lexd file as the symbol {defu}. The mapping of this to the correct output symbol was conditioned using rules in the twol file.

3.5. Infixed punctuation

For punctuation, some punctuation elements are placed outside of words, but others are placed inside words on the stressed vowel. For example, the word [p·a·r·] 'word' when unquestioned is spelled pun 〈pa·r· 〉. When this word is questioned, the interrogative marker is added on top of the stressed vowel: gu'n 〈pa·r· 〉. Stress is generally predictable in the language as being word-final while ignoring schwa.

Some function words have idiosyncratic stress placement. To handle word-internal punctuation, we specified a final punctuation marker for every word in the lexicon (lexd file). In another transducer built to handle infixed punctuation, also written in the lexd formalism, we defined ‘metathesis’ rules to move these final punctuation symbols into the correct word-internal location.

For words with irregular stress, the main lexicon file contained a diacritic to mark this irregular stressed location. For example, the word ‘how much’ has irregular stress on the first syllable: [v·x·k·ən]. The question marker is added on the first syllable: n'ŋpuu 〈o·r·k·a·n· 〉. The lexicon represents this word as n'(")ŋpuu with a diacritic question mark. Upon intersection with the punctuation transducer, the value of the question marker is changed, moved, or deleted as needed.

4. Evaluation

4.1. Corpora

To perform evaluation, we prepared several corpora. The Bible corpus is the contents of a Western Armenian translation of the Bible, available from an Armenian church website. The News corpus consists of the texts of the Kantsasar Armenian News website from Syria. Content was scraped in early November, 2021, using a web spider written using Scrapy. The Wikipedia corpus consists of the pages and articles dump of the Western Armenian Wikipedia from January 1, 2022. Text files were extracted from the XML dump. We likewise tested our Western transducer over the UD Treebank.

All evaluation was performed on revision a2ad591, from mid-January, 2022.

[1] https://hyw.wikipedia.org/ The name of the translated edition is not specified, but the translation is stated as being from 1994.

for Western Armenian (in UD v2.9) (Yavrumyan et al., 2021b). The treebank included a training set, development set, and test set.

4.2. Naive coverage

Naive coverage is the number of forms in a corpus for which the analyzer returns an analysis, regardless of whether the analysis is correct or not. Ambiguity is the average number of analyses returned by the analyzer per analyzed form. Table 2 shows the naive coverage and ambiguity of the Western Armenian transducer on the corpora described in §4.1.

<table>
<thead>
<tr>
<th>corpus</th>
<th>tokens</th>
<th>coverage</th>
<th>ambiguity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bible</td>
<td>744K</td>
<td>99.33%</td>
<td>1.54</td>
</tr>
<tr>
<td>News</td>
<td>1.78M</td>
<td>95.00%</td>
<td>1.56</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>3.56M</td>
<td>90.67%</td>
<td>1.37</td>
</tr>
<tr>
<td>UD training</td>
<td>70K</td>
<td>95.33%</td>
<td>1.44</td>
</tr>
<tr>
<td>UD dev</td>
<td>9.6K</td>
<td>96.35%</td>
<td>1.48</td>
</tr>
<tr>
<td>UD test</td>
<td>10K</td>
<td>96.72%</td>
<td>1.46</td>
</tr>
</tbody>
</table>

Table 2: Naive coverage on Western Armenian

Naive coverage is above 90% for all corpora, and at or above 95% for most. This level of coverage is very high, and should be considered sufficient for many tasks. Many of the top unanalyzed forms are in fact forms from other languages which should not be analyzed, especially in the Wikipedia corpus. Actual missing content in the transducer mostly consists of proper nouns and some rarely occurring stems which are not found in Armenian-English dictionaries. Some tokens are also words from other Armenian dialects, such as Classical Armenian and Eastern Armenian (whether in the traditional or reformed spelling).

Ambiguity is around 1.5, meaning that there are approximately 3 analyses returned for every 2 analyzed tokens. Disambiguation is a task for future work.

4.3. Accuracy

We evaluated the precision and recall of our transducer over a random sample of words. We first retrieved 1300 random tokens from the News corpus. We then cleaned the sample by removing words that were typos, foreign words, words from other dialects or spelling systems, or were words that were so low-frequency that we couldn’t find them in any modern dictionary. In all, 1225 tokens were hand-annotated. The results are shown in Table 3.

<table>
<thead>
<tr>
<th>Tokens</th>
<th>Precision</th>
<th>Recall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1225</td>
<td>90.58%</td>
<td>74.82%</td>
</tr>
</tbody>
</table>

Table 3: Precision and recall measurements

Precision measures how many of the transducer-provided analyses for the tokens were correct. Recall measures how

many of the correct analyses were retrieved from the transducer. Although our precision was high at nearly 90%, our recall rate was around 75%. This was because the transducer currently accepts more forms for a given analysis than is correct. This “overanalysis” is due to complications in the variable application of some phonological rules that are reflected in the orthography (vowel reduction), and semantically-induced variation in plural marking (§5.2). Future work would remedy this issue.

4.4. Compilation speed

One current weakness of the Lexd compiler is compilation speed and memory use. As of revision 41b8555, the transducer took 2 minutes 56 seconds and peak memory usage of 4.29GB to compile using a single core of an Intel i9-9900X CPU (3.50GHz). We were able to optimise many of the definitions by factoring out common subpatterns (revision 49a7487). After this, compilation on the same system took only 48 seconds with peak memory usage of 387MB. This constitutes a nearly four-fold decrease in speed and an over 11 times decrease in memory usage.

5. Future work

This section briefly outlines our thoughts on how this transducer could be improved through increasing coverage (5.1) and handling overgeneration (5.2). Expansions to handle additional dialects which is a quite complicated problem, postponed to (6).

5.1. Increasing coverage

As stated, our lexicon was based off of a published dictionary that had at least 60k lemmas. Both the original dictionary and its digitized content had a few errors in terms of spelling or part-of-speech assignment. We tried to find as many errors as possible. Future work should go through the entire dictionary more carefully to weed out other errors. We can also cross-reference our dictionary with another dictionary in order to help find other errors or increase coverage. We are currently trying to do so with additional digitized dictionaries from Nayiri.

5.2. Handling overgeneration

One complication for our generator comes from compounds. Compounds are formed by concatenating two stems with a vowel u /a/ intervening. Compounds are listed as single orthographic words in the dictionary. For inflecting a compounds, knowing the right plural suffix depends on knowing the word’s semantics (Donabédian, 2004; Dolašian, 2021). Such information cannot be easily determined from the dictionary, so without further work our generator overgenerates. To fix this issue, a possible future step is to use the lemma list of the EANC, which provides this semantic information.

6. Cross-dialectal support

It would be ideal if the current Western Armenian transducer can interface with a transducer for Eastern Armenian, cf. strategies in Vidal-Gorène et al. (2020). The two
dialects share large portions of their morphology and orthography, and code switching can be found within large corpora.

6.1. Differences between dialects

Eastern Armenian is the official language and dialect of Armenia. It has many morphological differences from Western Armenian, which are reflected in the orthography. Thus a morphological transducer for Western Armenian is not expected to work perfectly for Eastern Armenian, even when orthographic differences are accounted for.

In terms of orthography, up until the mid 20th century, Eastern Armenian in Armenia was written in the Classical Orthography system (Sanjian, 1996). This is the system that is still in use for Western Armenian. But during the Soviet era, various spelling reforms were applied to Eastern Armenian as spoken within the Soviet Union. The current spelling system is called the Reformed Orthographic system. This system applies to Eastern Armenian as spoken in Armenia and most of the Eastern Armenian diaspora. The exception is the Eastern Armenian community in Iran which still uses the Classical Orthography. Some Eastern liturgical literature is still published in the Classical Orthography.

To illustrate, in Table 4, we show the pronunciation and spelling of a passive verb ‘to be gathered’ for Western and Eastern Armenian. The main morphological difference is that Western Armenian uses a theme vowel /i-/ for passives, while Eastern Armenian uses a theme vowel /e-/.

The classical spelling of the passive suffix /-v-/ is միխ, while the reformed spelling is իլ. Between W and E, the most common ‘unknown’ word is հատ, which has two spellings: [հատ] in Eastern Armenian, but [հատ] in the reformed system. In this case, the two spellings are almost identical, and the orthography doesn’t show these differences. The fact that the two dialects have unequal naive coverage is because some inflectional suffixes are present in Eastern but not Western Armenian. Some high-frequency words likewise have different orthographic representations across the two lects. For example, the most common ‘unknown’ word in the traditional Eastern Armenian is ‘he said’ at 3812 tokens. This word is [ասավ] in Eastern Armenian, but [ասավ] in the reformed system.

6.2. Evaluating the analyzer on Eastern Armenian

For exploratory purposes, we tested our Western transducer on pages and articles from the Eastern Armenian Wikipedia, from January 1 2022. We likewise tested our transducer over the UD Treebank for Eastern Armenian (v2.9) (Yavrumyan et al., 2021a), which uses the reformed orthography. In Table 5, we report naive coverage of our Western Armenian transducer on these Eastern Armenian corpora.

<table>
<thead>
<tr>
<th>corpus</th>
<th>spelling type</th>
<th>tokens</th>
<th>coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bible</td>
<td>traditional</td>
<td>832k</td>
<td>93.61%</td>
</tr>
<tr>
<td>Bible</td>
<td>reformed</td>
<td>775k</td>
<td>79.96%</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>reformed</td>
<td>62M</td>
<td>67.92%</td>
</tr>
<tr>
<td>UD training</td>
<td>reformed</td>
<td>42K</td>
<td>74.65%</td>
</tr>
<tr>
<td>UD dev</td>
<td>reformed</td>
<td>5.3K</td>
<td>72.44%</td>
</tr>
<tr>
<td>UD test</td>
<td>reformed</td>
<td>5.3K</td>
<td>74.76%</td>
</tr>
<tr>
<td>UD BSUT</td>
<td>reformed</td>
<td>3.1K</td>
<td>74.69%</td>
</tr>
</tbody>
</table>

Table 5: Naive coverage on Eastern Armenian corpora

6.2.1. High coverage on the traditional orthography

For Eastern Armenian corpora with traditional spelling, our transducer works quite well: 93% for the Eastern Bible, while 99% for the Western Bible. The high coverage rate is not surprising because the two dialects share the bulk of the same lexicon and derivational/inflectional morphology. They differ significantly in their phonology and pronunciations, but the orthography doesn’t show these differences.

6.2.2. Low coverage on the reformed orthography

The coverage of the Western Armenian transducer over Eastern corpora with the reformed spelling is drastically lower, anywhere between 67% to 79% percent. This difference is likely because of rampant spelling differences across the two spelling systems. For example, the most common ‘unknown’ word in the reformed Eastern Bible is the word [jev] ‘and’ at 4026 tokens. This word is spelled as եվ in Eastern but not Western Armenian.

6.3. Combining the dialects in one analyzer

There are several ways that the transducer could be expanded to support multiple dialects. We have already be-

17http://ter-hambardzum.net/armenia-bible-online/
18https://hycatholic.ru/biblio/wumqubu2nl2/
gun expanding the transducer source code and compilation instructions in one such way. When not the same across dialects, stems and inflectional morphology may be specified on a per-dialect level. This allows the compilation of separate analyzers, separate generators, and a combined analyzer.

7. Conclusions

This paper overviewed the development of a free/open-source morphological analyzer and generator for Western Armenian. In terms of naive coverage, it performs quite well over various Western Armenian corpora. It has high precision and okay recall. It likewise has some coverage over other dialects, thus paving the way for creating a pan-dialectal transducer.

8. Bibliographical References

9. Language Resource References

Dialects Identification of Armenian Language

Karen Avetisyan
Russian-Armenian University
Yerevan, Armenia
avetisyan.karen@student.rau.am

Abstract
The Armenian language has many dialects that differ from each other syntactically, morphologically, and phonetically. In this work, we implement and evaluate models that determine the dialect of a given passage of text. The proposed models are evaluated for the three major variations of the Armenian language: Eastern, Western, and Classical. Previously, there were no instruments of dialect identification in the Armenian language. The paper presents three approaches: a statistical which relies on a stop words dictionary, a modified statistical one with a dictionary of most frequently encountered words, and the third one that is based on Facebook’s fastText language identification neural network model. Two types of neural network models were trained, one with the usage of pre-trained word embeddings and the other without. Approaches were tested on sentence-level and document-level data. The results show that the neural network-based method works sufficiently better than the statistical ones, achieving almost 98% accuracy at the sentence level and nearly 100% at the document level.

Keywords: Dialect identification, Western Armenian, Eastern Armenian, Classical Armenian

1. Introduction
The Armenian language has many actively used dialects. They differ from each other syntactically, morphologically, and phonetically. Considering the variation in the existing literature and the current usage of various variants of the language, dialect identification in texts is a relevant and open problem for Armenian dialects. Thus, this paper tries to solve that problem for three major variations of the Armenian language: Eastern, Western, and Classical. Dialect identification is similar to language identification, but has several important differences that make the task more challenging. Contrary to different languages, dialects share the same script and have highly overlapping vocabularies. Despite the subtle differences between the tasks, to solve the dialect identification task in this work we study the performance of established lexicon- and artificial neural network-based language identification approaches.

Lexicon-based methods use a list of stop words for each language to detect their texts. A similar approach was shown in Truică et al. (2015), where the stop words and diacritics formed the lexicon. The Armenian language has no diacritics and stop words can be very similar among dialects, therefore this method may not always be suitable for the chosen task. For that reason, it was modified to use the list of the most frequent words of each of the considered dialects.

The artificial neural network-based approach learns numerical representations of words and uses them as input features for classification. One of the most popular implementations of this method relies on Facebook’s fastText library¹ for text classification and representation (Joulin et al., 2016) as it has shown high results on language identification tasks. Here, the model was trained both with the usage of the pre-trained fastText word embeddings and without it. To train the model, data from Western² and Eastern³ Armenian Wikipedia was collected, as well as the data from Digilib⁴ for Classical Armenian.

All three methods were tested on sentence-level and document-level testing datasets that were also collected from Wikipedia-s and Digilib texts. In addition to this, the dependency of text segment size to dialect identification accuracy is shown.

2. Methods
To solve the task of Armenian dialect identification, three methods were used.

(i) Stop Words: As a baseline solution for the problem, a stop-word-based algorithm was selected. Let \(W_d \) be the stop words vocabulary of the dialect \(d \in \{ \text{Western}, \text{Eastern}, \text{Classical} \} \). \(W_e \) is the set of words contained in the text \(E \). For each text \(E \), the dialect is predicted according to this statement:

\[
\text{label}(E) = \arg\max_{d} (|W_d \cap W_e|)
\]

If there are two or three maximal values, the label is chosen randomly according to the values.

(ii) Lexicon-Based: The first method was modified by making the \(W_d \) not only stop words vocabulary. Here, 2 different \(W_d \) vocabularies were tested. The process of both \(W_d \) dictionary-formation is described in Chapter 3.

(iii) Neural Network-Based: For the other method, Facebook’s fastText language identification model was utilized. Here, the words are being presented as a set of n-grams. Each n-gram has its representation vector that is also trainable. These representations are then being averaged and given to a linear classifier. In the end, softmax is used as an activation function.

The model was trained to predict 3 dialects: Eastern Armenian, Western Armenian, and Classical Armenian.

¹ https://fasttext.cc/blog/2017/10/02/blog-post.html
² https://hy.wikipedia.org/
³ https://hy.wikipedia.org/
⁴ https://digilib.aua.am/en

Karen Avetisyan
Russian-Armenian University
Yerevan, Armenia
avetisyan.karen@student.rau.am
3. Data
To collect the training data for Eastern (hye) and Western (hyw) Armenian, respective Wikipedia dumps\(^5\) were used. Whereas, the texts from Digilib were utilized to get the data for Classical Armenian. The stop word dictionary for Western and Classical Armenian was collected manually utilizing the list of most frequent words that was in turn collected from the above-described resources. Eastern Armenian stop words were taken from here\(^7\).

For the lexicon-based method, three dictionaries (one for each dialect) were formed. The formation was processed in two different ways, using the corresponding data for each of the dialects separately. Removing the words that contain non-Armenian letters as well as punctuation symbols, the word frequency was counted. Assuming that \(V_{Ak}\) stands for the set of top \(k\) most frequent words in dialect \(A\), the final dictionary for the dialect \(A\), in two different ways a) and b), will look as follows:

\[
\begin{align*}
a) \hspace{0.5cm} D_A &= V_{Ak} \setminus (V_{B,k} \cap V_{C,k}) , \\
b) \hspace{0.5cm} D_A &= V_{Ak} \setminus (V_{B,k} \cup V_{C,k}) ,
\end{align*}
\]

where \(V_{B,k}\) and \(V_{C,k}\) are the sets of top \(k\) frequent words in dialects \(B\) and \(C\), respectively. As for the data to train the fastText language identification model, sentences were randomly extracted from the considered datasets. It was decided not to filter the extracted sentences according to their length, taking into account the fact that fastText trains its own models using sentences with different lengths. For each of the dialects, the training set contains an equal number of sentences.

To test the methods, two types of test data were created. The first one is a set of sentences randomly extracted from the Wikipedia dumps and Digilib. For each dialect, this set contains 500 sentences. The average length of the sentences is equal to nearly 18 words or \(\approx 130\) characters.

The second test set consists of whole texts, a hundred documents for each dialect, randomly extracted from the same sources. The average length of the document is equal to \(\approx 600\) words or \(\approx 4150\) characters. For Classical Armenian, only the first 50 sentences of each document were extracted to balance the average length of documents for each of the dialects.

4. Experiments
In this chapter, the process of hyperparameter tuning, the results on tuned hyperparameters, and some other additional statistics are shown. The best results that each of the described methods achieve, and their corresponding time consumption, are shown in Table 1 and Table 2 separately for sentence and document level test sets.

According to the results shown in Table 1 and Table 2, the neural network-based method achieves sufficiently better results than the ones based on vocabulary.

Further, in subchapters 4.1 and 4.2 more detailed results for all the conducted experiments are described.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Accuracy</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop-Words</td>
<td>0.51</td>
<td>0.02s</td>
</tr>
<tr>
<td>Lexicon-Based</td>
<td>0.67</td>
<td>1.71s</td>
</tr>
<tr>
<td>Neural-Network</td>
<td>0.98</td>
<td>0.14s</td>
</tr>
</tbody>
</table>

Table 1: The best results and time consumption of each method on the sentence-level test set. (Processing time of 1500 sentence examples)

<table>
<thead>
<tr>
<th>Methods</th>
<th>Accuracy</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop-Words</td>
<td>0.55</td>
<td>0.04s</td>
</tr>
<tr>
<td>Lexicon-Based</td>
<td>0.67</td>
<td>0.16s</td>
</tr>
<tr>
<td>Neural-Network</td>
<td>1.00</td>
<td>0.76s</td>
</tr>
</tbody>
</table>

Table 2: The best results and time consumption of each method on the document-level test set. (Processing time of 300 document examples)

4.1 Lexicon-based method
For the lexicon-based method, we tuned \(k\), the number of the most frequent words used to create the final dictionaries. For each value of \(k\), and for both variations of dictionary-creation, the accuracy score was calculated. The results of these experiments for sentence-level and document-level test sets are shown in Figure 1 and Figure 2.

![Figure 1: The comparison of a) and b) dictionary versions in terms of accuracy score on the sentence-level test set depending on the number of most frequent words taken.](https://github.com/stopwords-iso/stopwords-hy)

According to the results (Figure 1 and Figure 2), it is noticeable that the b) version of dictionary-creation overall works better on both of the test sets.

4.2 Neural network-based method
For this method, we trained the fastText model on 3 different size datasets. These datasets consisted of 1000, 2000, and 5000 sentences per each label.

\(^3\) https://dumps.wikimedia.org/hywiki/

\(^4\) https://dumps.wikimedia.org/hywwiki/

\(^7\) https://github.com/stopwords-iso/stopwords-hy
Figure 2: The comparison of a) and b) dictionary versions in terms of accuracy score shown on the document-level test set depending on the number of most frequent words taken.

4.2.1 Hyperparameters
For more efficient usage of the method, we had to tune some basic hyperparameters like minn and maxn, which denote the minimal and maximal length of character n-grams. Taking into account the fact that the average length of the words used in the training set is nearly 6 characters, the minimal and maximal lengths of character n-grams were tuned within these limits. In addition, the process of training was held with and without pre-trained word vectors. While using the pre-trained word vectors, the dim parameter, which stands for the size of word vectors, was equal to 300. As pre-trained word vectors, fastText’s default vectors for the Armenian language were used. When the training process was held without pre-trained vectors, the dim parameter was set to 16 as it is suggested in the fastTexts language identification tutorial.

Hyperparameter tuning was performed on the sentence-level test set. The results both with and without the usage of pre-trained word vectors are shown in Table 3 and Table 4. The presented results are the average of 5 separate runs with different random seeds.

As we can see from Table 3 and Table 4, the results are much more stable with the usage of pre-trained vectors, while the n-gram minimum and maximum sizes change. The best results were also achieved with the usage of pre-trained vectors with the training set size of 5000 sentences per label.

4.2.2 Results
Based on the hyperparameter tuning results, the models that achieved the best results were taken. For these models, their confusion matrices are presented in Figure 3. As we can see from these matrices, the models are mainly confused in predicting Classical Armenian sentences as Western Armenian ones, and Western Armenian sentences as Eastern Armenian ones.

<table>
<thead>
<tr>
<th>Sentences per label</th>
<th>1000</th>
<th>2000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>maxn minn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>93.3</td>
<td>95.7</td>
<td>96.1</td>
</tr>
<tr>
<td>2</td>
<td>95.3</td>
<td>95.4</td>
<td>95.7</td>
</tr>
<tr>
<td>3</td>
<td>95.5</td>
<td>95.5</td>
<td>95.5</td>
</tr>
<tr>
<td>4</td>
<td>95.2</td>
<td>94.9</td>
<td>94.7</td>
</tr>
<tr>
<td>5</td>
<td>94.4</td>
<td>94.2</td>
<td>94.4</td>
</tr>
<tr>
<td>6</td>
<td>94.6</td>
<td>94.6</td>
<td>94.6</td>
</tr>
</tbody>
</table>

Table 3: minn and maxn hyperparameters tuning, on sentence-level test set, for different size training data with pre-trained word vectors (dim=300).

<table>
<thead>
<tr>
<th>Sentences per label</th>
<th>1000</th>
<th>2000</th>
<th>5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>maxn minn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>84.4</td>
<td>74.9</td>
<td>71.4</td>
</tr>
<tr>
<td>2</td>
<td>88.7</td>
<td>68.6</td>
<td>73.4</td>
</tr>
<tr>
<td>3</td>
<td>85.2</td>
<td>74.7</td>
<td>78.9</td>
</tr>
<tr>
<td>4</td>
<td>79.1</td>
<td>76.8</td>
<td>72.9</td>
</tr>
<tr>
<td>5</td>
<td>71.7</td>
<td>61.3</td>
<td>92.8</td>
</tr>
<tr>
<td>6</td>
<td>68.1</td>
<td>91.9</td>
<td>94.7</td>
</tr>
</tbody>
</table>

Table 4: minn and maxn hyperparameters tuning, on sentence-level test set, for different size training data without pre-trained word vectors (dim=16).

https://fasttext.cc/blog/2017/10/02/blog-post.html
Figure 3: Confusion matrixes of models with best hyperparameters on the sentence-level test set.

Figure 4: A comparison of models that were trained with and without pre-trained vectors on the document-level test set, while changing the number of training examples.

Figure 5: A comparison of models that were trained with and without pre-trained vectors on the sentence-level test set, while changing the number of training examples.

The best models for each number of train examples and according to the usage of pre-trained vectors were also tested on the sentence and document level test sets. These results are shown in Figure 4 and Figure 5. Here the presented results are also the average of 5 seeds. From Figure 4 and Figure 5 we can conclude that the models for which pre-trained vectors were used achieve the same results with a smaller amount of data used for their training. Also, we can see that the model that does not use pre-trained vectors and for the training of which 5000 sentences per label were used, achieves nearly the same results as the model that uses the vectors.

Further, to minimize the time consumption on the document-level dialect identification task, additional experiments were held using only the first \(n \) symbols of each test example. The value of \(n \) was changed from 10 to 200 symbols. Time consumption for an experiment, where \(n \) was equal to 200 symbols, was decreased by nearly 20 times for each of the considered models. The achieved accuracy scores for these experiments are shown in Figure 6. The final scores were also calculated by averaging the results of 5 seeds.

Figure 6: Accuracy score according to the change of a number of first symbols that are given to the neural network-based best model.
5. Conclusion

In this work, we evaluated three different methods of Armenian dialect identification. The neural network-based method performed best, achieving 98% accuracy at sentence level and 100% accuracy at document level. Utilizing pre-trained word vectors to train the neural network allowed us to achieve decent results for this task, using only a small number of training examples. This feature could be helpful for the identification process of less popular dialects. Additionally, it was shown that using only the first 200 characters of the document would be sufficient for accurate dialect identification, which in practice will help to significantly reduce the computation time when processing long documents.

6. Bibliographical References

Belinkov, Y. & Glass, J. (2016). A Character-level Convolutional Neural Network for Distinguishing Similar Languages and Dialects. VarDial@COLING.

Analyse Automatique de l’Arménien Ancien.
Évaluation d’une méthode hybride « dictionnaire » et « réseau de neurones » sur un Extrait de l’Adversus Haereses d’Irénée de Lyon

Gabriel Kepeklian, Bastien Kindt
Centre d’études orientales – Institut orientaliste de Louvain (CIOL),
Institut des civilisations, arts et lettres (INCAL),
UCLouvain, Louvain-la-Neuve, Belgium
{gabriel.kepeklian,bastien.kindt}@uclouvain.be

Abstract
The aim of this paper is to evaluate a lexical analysis (mainly lemmatization and POS-tagging) of a sample of the Ancient Armenian version of the Adversus Haereses by Irenaeus of Lyons (2nd c.) by using hybrid approach based on digital dictionaries on the one hand, and on Recurrent Neural Network (RNN) on the other hand. The quality of the results is checked by comparing data obtained by implementing these two methods with data manually checked. In the present case, 98,37% of the results are correct by using the first (lexical) approach, and 74,64% by using the second (RNN). But, in fact, both methods present advantages and disadvantages and argue for the hybrid method. The linguistic resources implemented here are jointly developed and tested by GREgORi and Calfa.

Mots-clés : arménien ancien, lemmatisation, étiquetage morphanymatique (POS-tagging), réseau de neurones (RNN)

1. Introduction

1.1 Irénée de Lyon et l’Adversus Haereses
Irénée (mort vers 202 ap. J.-C.) est le deuxième évêque de Lyon (Lugdunum), capitale des trois Gaules, territoires alors soumis à l’Empire romain. Père de l’Église, il est aussi considéré comme le premier théologien. Natif de Smyrne en Asie Mineure, sa langue et sa culture sont grecques. Son œuvre principale, écrite en grec, est une Présentation et réfutation de la gnose au faux nom ("Ἐλεγχος ἀνατροπη τῆς γνωσεως", en cinq livres. L’auteur y réfute les doctrines gnostiques venues d’Asie Mineure, traductions sont parvenues jusqu’à nous. La première lemmatisation du texte grec est celle transmise par le rédacteur d’Adversus Haereses (« Contre les Hérésies » ; désormais AH). La seconde est une traduction arménienne (VIIe s.) intitulée Եղծման ստանուն գիտութեան (Préface - Ch. II, 3) connue par un unique manuscrit du XIIIe s., conservé au Maténadaran à Erevan sous la cote M3710. De nombreux fragments grecs et arméniens, et quelques autres latins et syriaques complètent en outre ces deux traductions. Le cinquième livre de l’AH, dans sa version arménienne, vient de faire l’objet d’une nouvelle édition par Kepeklian, (2021)1. L’analyse lexicale de ce texte est en cours dans le cadre du projet GREgORi.

| Tableau 1 : Nombre de mots-occurrences, de formes de mots et de lemmes dans l’AH, V et dans l’extrait (Préface - Ch. II, 3) |

<table>
<thead>
<tr>
<th>Mots-occurrences (tokens)</th>
<th>Formes de mots (unique token)</th>
<th>Lemmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livre V 25.544</td>
<td>6.069</td>
<td></td>
</tr>
<tr>
<td>Préface - Ch. II, 3</td>
<td>1.530</td>
<td>756</td>
</tr>
<tr>
<td>(en cours d’analyse)</td>
<td></td>
<td>444</td>
</tr>
</tbody>
</table>

1 Cette nouvelle édition sera publiée dans le Corpus Scriptorum Christianorum Orientalium édié par Peeters Publishers (Leuven, Belgique).

1.2.1 Les lexiques de référence

Comme l’illustre le tableau 2, les ressources lexicales du projet GREgORI pour l’arménien sont réunies dans des lexiques de référence totalisant 1.199.123 formes de mots, regroupées sous 30.311 lemmes.

Formes simples	315.952
Formes composées	883.171
Nombre total de formes	1.199.123
Lemmes	30.311

Tableau 2 : Nombre de lemmes, de formes simples et de formes composées enregistrées dans les ressources linguistiques du projet GREgORI

Ces ressources distinguent les formes dites « simples » (1) et les formes dites « composées » (2).

1) փոքր mard « homme », lemme փոքր, catégorie morphosyntaxique N+Com (nom commun), analyses flexionnelles :As:Ns:Us (accusatif singulier, nominatif singulier et locatif singulier) (les étiquettes morphosyntaxiques et flexionnelles sont énumérées dans les tableaux les annexes 3 et 4, cfr 7.3 et 7.4).

2) գնդաձ marden « les hommes », segmenté lors de l’analyse en գ-նդաձ-ի, 1+Prep (préfixe prépositionnel), N+Com (nom commun) et PRO+Dem (suffixe déterminatif) :As (accusatif singulier)5.

La distinction établie entre formes simples et formes composées, et donc la discrimination des préfixes prépositionnels et des suffixes déterminatifs, permet d’inclure ces éléments lexicaux dans les analyses. Ces éléments peuvent donc servir d’arguments dans les requêtes formulées par les chercheurs explorant le corpus. Les principes de formulation des intitulés de lemme et les étiquettes morphosyntaxiques et flexionnelles sont décrits dans (Coulie, Kindt, Kepeklian et Van Elverdinghe, 2022).

1.2.2 Le réseau de neurones

L’approche par réseau de neurones est basée sur un apprentissage mis en œuvre sur le corpus des textes déjà traités. Elle a déjà été testée et évaluée, en arménien comme dans d’autres langues de l’Orient chrétien (Vidal-Gorène and Kindt, 2020 ; Vidal-Gorène and Kindt, 2022). Le tableau 4 rappelle les résultats obtenus à cette occasion sur un corpus de test. Sur l’ensemble des mots du corpus de test, l’accuracy atteint 0.9044 pour la lemmatisation et 0.9238 pour l’étiquetage morpho-syntaxique (résultats de mai 2020). Pour rappel, cette approche ne fournit pas encore les informations flexionnelles. Deux constats ont été établis lors de cette évaluation : 1) les résultats observés sont meilleurs sur les formes ambiguës que sur les formes inconnues ; 2) les résultats sont meilleurs pour la catégorisation morphosyntaxique que pour la lemmatisation.

<table>
<thead>
<tr>
<th>Lemmatisation</th>
<th>Formes ambiguës (tokens)</th>
<th>Formes inconnues (tokens)</th>
</tr>
</thead>
<tbody>
<tr>
<td>accuracy</td>
<td>0.9044</td>
<td>0.8620</td>
</tr>
<tr>
<td>precision</td>
<td>0.6630</td>
<td>0.4411</td>
</tr>
<tr>
<td>recall</td>
<td>0.6711</td>
<td>0.5211</td>
</tr>
<tr>
<td>f1-score</td>
<td>0.6670</td>
<td>0.4778</td>
</tr>
</tbody>
</table>

Étiquetage morphosyntaxique

<table>
<thead>
<tr>
<th>Lemmatisation</th>
<th>Formes ambiguës (tokens)</th>
<th>Formes inconnues (tokens)</th>
</tr>
</thead>
<tbody>
<tr>
<td>accuracy</td>
<td>0.9238</td>
<td>0.9145</td>
</tr>
<tr>
<td>precision</td>
<td>0.6513</td>
<td>0.6306</td>
</tr>
<tr>
<td>recall</td>
<td>0.6264</td>
<td>0.6501</td>
</tr>
<tr>
<td>f1-score</td>
<td>0.6386</td>
<td>0.6402</td>
</tr>
</tbody>
</table>

Tableau 4 : Résultats de la lemmatisation et de l’étiquetage morphosyntaxique par réseau de neurones

1.2.3 Objectif de cette contribution

Le but de cet article est d’évaluer une nouvelle fois les résultats acquis par les deux approches, celle basée sur l’utilisation des ressources du projet GREgORI (désormais GREgORI) et celle basée sur un réseau de neurones (désormais RNN, pour l’anglais Recurrent Neural Network).

5 Tous les exemples arméniens cités sont tirés de l’extrait de l’AH.
Le document contient des phrases sur l'analyse des lemmes et des formes inconnues en arménien ancien. Il mentionne la comparaison des analyses de GREgORI et de RNN, ainsi que l'importance de la révision manuelle des résultats. Il implique également une évaluation des méthodes utilisées.

2.1 Accord entre GREgORI et Révision

<table>
<thead>
<tr>
<th>Accord sur</th>
<th>Nombre</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>le lemme et la catégorie</td>
<td>1,505</td>
<td>98,37%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tableau 5 : Accord GREgORI vs Révision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dans la très grande majorité des cas, parmi les analyses fournies par GREgORI (une seule ou plusieurs) se trouve l'analyse correcte, que ce soit pour des formes simples ou composées (cfr 1.2.1).</td>
</tr>
</tbody>
</table>

1) այլ ամայի անապատ եղելու (AH V 2.1) « mais devenu privé »

2) այլ ամայի անապատ եղելու (AH V 2.1) « mais devenu privé »

3) այլ ամայի անապատ եղելու (AH V 2.1) « mais devenu privé »

4) այլ ամայի անապատ եղելու (AH V 2.1) « mais devenu privé »
la forme ամայի « privé » est l’adjectif ամայի au nominatif singulier. Dans les ressources de GREGORI, cette forme n’est enregistrée que sous le verbe աւատ.

5) պուռնել ինքնուրույկ կինը (AH V præf.,) barwok’en pahec’eal yekelec’woy « [la] bien gardée dans l’église »

– պուռնել, A:As:Ns@u, PRO+Dem –

la forme պուռնել barwok’n « bien » correspond à l’adjectif պուռնել barwok’ au nominatif singulier suffixé du déterminatif -լու, lemme absent des ressources de GREGORI.

2.3 Accord entre RNN et Révision

Tableau 7 : Accord RNN vs Révision

<table>
<thead>
<tr>
<th>Accord sur</th>
<th>Nombre</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>le lemme (6)</td>
<td>1201</td>
<td>78,50%</td>
</tr>
<tr>
<td>la catégorie (7)</td>
<td>1308</td>
<td>85,49%</td>
</tr>
<tr>
<td>le lemme et la catégorie (8)</td>
<td>1142</td>
<td>74,64%</td>
</tr>
</tbody>
</table>

6) պուռնել ինքնուրույկ կինը (AH V præf.,) ameneć’un ork’ patahic’en groys aysmik « à tous ceux qui rencontreront ce livre »

– պուռնել, u, u, PRO+Ind:Áp:Dp:Gp –

la forme պուռնել ameneć’un « tous » est le pronom indéfini պուռնել ameneć ean au datif pluriel. RNN a bien prédit le lemme mais le caractérise comme nom commun.

7) ո՞ այլ ո՞ այլ դատական կած պահեր (AH V 1.1) o’ aył ok’ xorhrdakic’ elew noraa « qui d’autre a été son conseiller ? »

– պահեր, լու (luu).PRO+Dem:Gs –

la forme պահեր est le génitif singulier du pronom démonstratif պահեր dont le lemme est եռ (luu) afin d’éviter l’homographie avec la conjonction եռ (lu). La forme est fréquente. Pourtant, RNN propose un lemme եռ (luu), sans doute présent, erronément, dans le corpus d’apprentissage.

8) ո՞ պահերունքել ունի գարդ պահեր (AH V 1.1) o’ bıınadatelon aınul zors kamérn « ne forçant pas à prendre celles qu’il voulait »

– պահերունքել, պահերունքել. V:KHz:WHs –

RNN propose pour la forme պահերունքել բıınadatelon « forçant », du lemme verbal պահերունքել բıınadatem, au participe et à l’instrumental singulier.

2.4 Désaccord entre RNN et Révision

<table>
<thead>
<tr>
<th>Désaccord sur</th>
<th>Nombre</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>la catégorie, mais accord sur le lemme (9)</td>
<td>59</td>
<td>3,86%</td>
</tr>
<tr>
<td>le lemme, mais accord sur la catégorie (10)</td>
<td>166</td>
<td>10,85%</td>
</tr>
<tr>
<td>le lemme et la catégorie (11, 12)</td>
<td>163</td>
<td>10,65%</td>
</tr>
</tbody>
</table>

Tableau 8 : Désaccord RNN vs Révision

9) որպես ինքնական ամակ (AH V 2.3) opres eraneli arak’ealn asè « comme le bienheureux apôtre dit »

– որպես, I+Conj –

La conjonction որպես orpēs est erronément caractérisée comme un adverbe par RNN, analyse sans doute présente, erronément, dans le corpus d’apprentissage.

10) ի վռել ծառ գոյանութիւն որք (AH V 2.2) ew yayl ewa i marðn goyac’at’enè « et du reste de la substance de l’homme »

– գոյանութիւն, գոյանութիւն. N+Com:Às –

la forme գոյանութիւն goyac’at’ enè « substance » doit être comprise comme l’ablatif singulier du nom commun գոյանութիւն, le lemme qui n’existe pas : գոյանութիւն.

11) ի վռել սառ գոյանութիւն որք (AH V 1.1) i lawên zart na « à partir du bon auprès de lui »

– վռել, u, u, A:Âs@u, PRO+Dem –

la forme վռել est l’ablatif singulier de l’adjectif վռել accompagné de la substantif déterminatif -տու, RNN suggère une analyse possible, à savoir une forme conjuguée du verbe վռել. Mais cette prédiction ne convient pas in textu.

12) ո՞ (…) ի հուգը ո՞ այլ ամակ (AH V 2.2) or (…) i hac’è or marmin noraa acèr « qui (…) s’accroissait par le pain qui est son corps »

– հուգը, հուգ, N+Com:Às –

la forme հուգը est l’ablatif singulier du nom commun հաց hac’ « pain ». RNN prédit un lemme verbal հուգ. Le RNN prédit trente-six lemmes verbaux impropre car ne se terminant pas par -ու, -ու, -ու ou -ու.

2.5 Accord entre GREGORI et RNN

Après avoir aborder chaque outil isolément, nous prenons ici en compte leur accord sur une même analyse. Dans 73,86% des cas la prédiction du RNN correspond à une des analyses possibles proposées par GREGORI. C’est accord peut être correct ou fautif.

Tableau 9 : Accord GREGORI, RNN vs Révision

<table>
<thead>
<tr>
<th>Accord sur</th>
<th>Nombre</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>le lemme et la catégorie qui sont corrects (13)</td>
<td>1.130</td>
<td>73,86%</td>
</tr>
</tbody>
</table>
Les corrections apportées lors de la révision manuelle enrichissent les données. Pour les ressources de GREgORI, ce sont des ajouts de formes nouvelles, simples ou composées, ou de lemmes inédits, incluant les informations morphosyntaxiques et flexionnelles correspondant aux formes concernées. Il y a aussi des corrections. Pour RNN, les données lemmatisées de chaque nouveau texte traité rejoignent, après révision, le corpus d’apprentissage utilisé pour construire, tester et évaluer le réseau de neurones, avant son utilisation sur de nouveaux textes (cfr 1.2.2).

Plus ces outils seront utilisés, meilleurs ils seront. Le projet GREgORI est basé sur les itérations successives de ses outils et sur leur hybridation. Plusieurs corpus sont actuellement en cours de traitement ou de révision. L’examen des analyses produites ou prédites à l’occasion du traitement de ces textes permettra d’objectiver l’évolution progressive des performances de ces deux approches et de les comparer aux résultats acquis précédemment. À court ou moyen termes, l’accroissement des données déjà analysées permettra de paramétrer le RNN pour qu’il prédise aussi les analyses flexionnelles.

Après les inévitables phases de développement, d’implémentation et de test (comme décrit dans Vidal-Gorène et Kindt, 2020 ; Vidal-Gorène et Kindt, 2022 ; Kindt, Vidal-Gorène et Delle Donne, 2022), l’approche hybride combinant les analyses « par dictionnaire » et par « réseau de neurones » entre dans une phase de réelle production, en arménien, mais aussi dans les autres langues de l’Orient chrétien (grec, syriaque, géorgien, syriaque, grec, etc.). Outre le livre V de l’AH d’Irène, en cours de traitement sous la responsabilité de Gabriel Kepeklian (cfr 1.1 et note 1), les textes arméniens de deux volumes du CSCO ont ou vont bientôt rejoindre les données lemmatisées de GREgORI. Bernard Coulie a analysé le Commentaire à la Genèse attribué à Évagre le Pontique dans la phase de réelle production, en arménien, mais aussi dans les autres langues de l’Orient chrétien (grec, syriaque, géorgien, syriaque, grec, etc.).
4. Remerciements
Les auteurs tiennent à exprimer leur gratitude envers le Professeur Bernard Coulie (UCLouvain), Chahan Vidal-Gorène (Calfa), et Emmanuel Van Elverdinghe (UCLouvain).

5. Bibliographical References

6. Language Resource References

7. Annexes

7.1 Annexe 1 : Liste des formes inconnues de GREgORI mais analysées correctement par RNN

<table>
<thead>
<tr>
<th>Forme (token)</th>
<th>Lemme</th>
<th>Catégorie morphosyntaxique</th>
</tr>
</thead>
<tbody>
<tr>
<td>գնացելում</td>
<td>գնամ</td>
<td>V</td>
</tr>
<tr>
<td>եղելում</td>
<td>եղանիմ</td>
<td>V</td>
</tr>
<tr>
<td>զաստուածոյսն</td>
<td>զաստուած</td>
<td>I+Prep@N+Com@PRO+Dem</td>
</tr>
<tr>
<td>կացուսցէ</td>
<td>կացուցանեմ</td>
<td>V</td>
</tr>
<tr>
<td>երեւէրն</td>
<td>երեւիմ</td>
<td>V</td>
</tr>
<tr>
<td>յաղթեցելում</td>
<td>յաղթեմ</td>
<td>V</td>
</tr>
<tr>
<td>կատարելւոյն</td>
<td>կատարելի</td>
<td>A</td>
</tr>
<tr>
<td>այժմս</td>
<td>այժմ</td>
<td>I+Adv</td>
</tr>
<tr>
<td>բարվոքն</td>
<td>բարվոք</td>
<td>NUM+Ord</td>
</tr>
<tr>
<td>բարձրելոյն</td>
<td>բարձրեալ</td>
<td>A</td>
</tr>
<tr>
<td>շարունակէն</td>
<td>շարունական</td>
<td>A</td>
</tr>
<tr>
<td>բարձրելոյն</td>
<td>բարձրանամ</td>
<td>V</td>
</tr>
</tbody>
</table>

Cfr explication en 1.2.3.

7.2 Annexe 2 : Liste des formes inconnues de GREgORI et analysées erronément par RNN

<table>
<thead>
<tr>
<th>Forme (token)</th>
<th>RNN</th>
<th>Révision</th>
</tr>
</thead>
<tbody>
<tr>
<td>գնացելում</td>
<td>գնամ</td>
<td>A@PRO+Dem</td>
</tr>
<tr>
<td>եղելում</td>
<td>եղանիմ</td>
<td>A@PRO+Dem</td>
</tr>
<tr>
<td>զաստուածոյսն</td>
<td>զաստուած</td>
<td>I+Prep@I+Adv</td>
</tr>
<tr>
<td>կացուսցէ</td>
<td>կացուցանեմ</td>
<td>I+Prep@I+Adv</td>
</tr>
</tbody>
</table>

Cfr explication en 2.4.

7.3 Annexe 3 : Liste des étiquettes morphosyntaxiques (POS) (tiré de Coulie, Kindt, Kepeklian et Van Elverdinghe, 2022)

<table>
<thead>
<tr>
<th>Étiquette</th>
<th>Description</th>
<th>Étiquette</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adjectif</td>
<td>NUM+Car</td>
<td>Déterminant numérique cardinal (mot)</td>
</tr>
<tr>
<td>I+Adv</td>
<td>Mot invariable – Adverbe</td>
<td>NUM+Ord</td>
<td>Déterminant numérique ordinal (mot)</td>
</tr>
<tr>
<td>I+AdvPr</td>
<td>Mot invariable – Adverbe prépositionnel</td>
<td>NUMA+Car</td>
<td>Déterminant numérique cardinal (lettre)</td>
</tr>
<tr>
<td>I+Conj</td>
<td>Mot invariable – Conjonction</td>
<td>NUMA+Ord</td>
<td>Déterminant numérique ordinal (lettre)</td>
</tr>
<tr>
<td>I+Intj</td>
<td>Mot invariable – Interjection</td>
<td>PRO+Dem</td>
<td>Pronom démonstratif</td>
</tr>
<tr>
<td>I+Neg</td>
<td>Mot invariable – Négation</td>
<td>PRO+Ind</td>
<td>Pronom indéfini</td>
</tr>
<tr>
<td>I+Part</td>
<td>Mot invariable – Particule</td>
<td>PRO+Int</td>
<td>Pronom interrogatif</td>
</tr>
<tr>
<td>I+Prep</td>
<td>Mot invariable – Préposition</td>
<td>PRO+Per[1,2][s,p]</td>
<td>Pronom personnel</td>
</tr>
<tr>
<td>N+Ant</td>
<td>Nom propre anthroponymique</td>
<td>PRO+Pos[1,2][s,p]</td>
<td>Pronom possessif</td>
</tr>
<tr>
<td>N+Com</td>
<td>Nom commun</td>
<td>PRO+Rec</td>
<td>Pronom réciproque</td>
</tr>
<tr>
<td>N+Let</td>
<td>Nom d’une lettre</td>
<td>PRO+Ref</td>
<td>Pronom réfléchi</td>
</tr>
<tr>
<td>N+Pat</td>
<td>Nom propre patronymique</td>
<td>PRO+Rel</td>
<td>Pronom relatif</td>
</tr>
<tr>
<td>N+Prop</td>
<td>Nom propre</td>
<td>V</td>
<td>Verbe</td>
</tr>
<tr>
<td>N+Top</td>
<td>Nom propre toponymique</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annexe 4 : Liste des étiquettes flexionnelles (tiré de Coulie, Kindt, Kepeklian et Van Elverdinghe, 2022)

<table>
<thead>
<tr>
<th>Type d'étiquette</th>
<th>Étiquette</th>
<th>Description</th>
<th>Type d'étiquette</th>
<th>Étiquette</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cas</td>
<td>N</td>
<td>Nominatif</td>
<td>Mode</td>
<td>I</td>
<td>Indicatif</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>Accusatif</td>
<td>K</td>
<td>Subjonctif</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>Génitif</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Datif</td>
<td>Y</td>
<td>Impératif</td>
<td></td>
</tr>
<tr>
<td></td>
<td>U</td>
<td>Locatif</td>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>Ablatif</td>
<td>Temps</td>
<td>P</td>
<td>Présent</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>Instrumental</td>
<td></td>
<td>J</td>
<td>Aoriste</td>
</tr>
<tr>
<td>Nombre</td>
<td>s</td>
<td>Singulier</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>Pluriel</td>
<td>Personne</td>
<td>1</td>
<td>1er personne</td>
</tr>
<tr>
<td>Voix</td>
<td>E</td>
<td>Actif</td>
<td>2</td>
<td>Deuxième personne</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Passif</td>
<td>3</td>
<td>Troisième personne</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>Moyen-passif</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Describing Language Variation in the Colophons of Armenian Manuscripts

Emmanuel Van Elverdinghe, Bastien Kindt
Centre d’études orientales – Institut orientaliste de Louvain (CIOL),
Institut des civilisations, arts et lettres (INCAL),
UCLouvain, Louvain-la-Neuve, Belgium
{emmanuel.vanelverdinghe,bastien.kindt}@uclouvain.be

Abstract
The colophons of Armenian manuscripts constitute a large textual corpus spanning a millennium of written culture. These texts are highly diverse and rich in terms of linguistic variation. This poses a challenge to NLP tools, especially considering the fact that linguistic resources designed or suited for Armenian are still scarce. In this paper, we deal with a sub-corpus of colophons written to commemorate the rescue of a manuscript and dating from 1286 to ca. 1450, a thematic group distinguished by a particularly high concentration of words exhibiting linguistic variation. The text is processed (lemmatization, POS-tagging, and inflectional tagging) using the tools of the GREgORI Project and evaluated. Through a selection of examples, we show how variation is dealt with at each linguistic level (phonology, orthography, flexion, vocabulary, syntax). Complex variation, at the level of tokens or lemmata, is considered as well. The results of this work are used to enrich and refine the linguistic resources of the GREgORI project, which in turn benefits the processing of other texts.

Keywords: Ancient Armenian, colophons, lemmatization, POS-tagging, inflectional tagging, language variation

1. Preliminary notes and aims
1.1 The colophons of Armenian manuscripts
In the traditional sense, a colophon is a record of completion of a book by its scribe. The Armenian concept of vyəstakaran (literally “memorial”, usually translated as colophon), has a broader meaning, encompassing practically all significant annotations in manuscripts besides scholia or glosses, including personal notes left by later owners or readers. Colophons are an important part of the Armenian literary culture, where they are recognized as a full-fledged genre. As a result, they have attracted the interest of scholars for a long time, but especially since 1950, when the first systematic collection of colophons appeared in print. Since then, most colophons written until 1500 have been published in these dedicated collections, as well as colophons from the period 1601–1660. This paper deals with a particular sub-corpus of non-scribal colophons recording the rescue of a manuscript, usually from the hands of Muslim captors. Using the abovementioned printed collections (Xac’iwyany, 1955, 1967, 1950; Xac’iwyany, Mat’evosyan, and Lazaryan, 2018, 2020; Mat’evosyan, 1984), we identified 46 such colophons in the period leading up to 1450. The earliest of them was written in 1286; however, in several cases, the exact date is unknown and an approximate dating has been inferred. The text of these colophons was extracted from the corpus of Armenian colophons maintained at the UCLouvain and lemmatized according to the principles of the GREgORI Project (Coulie, Kindt, Kepeklian, and Van Elverdinghe, 2022). The main corpus of Armenian colophons currently comprises 1,232,652 tokens (Table 1, section A).

1.2 Language variation in Armenian
Variation affects all areas of language, occurring at the phonetical, morphological, lexical, syntactic, semantic, and pragmatic levels, and is mainly expressed across four dimensions: diachronic, diatopic, diastatic, and diaphasic (Auer and Schmidt, 2010: 226–228). This contribution focuses on phonetical, morphological, and lexical variation in Armenian colophons within the diachronic, diatopic, and diaphasic dimensions. Proper names (anthronyms and toponyms) are not considered here: the problems posed by this very abundant and versatile category ought to be considered separately. Upon manual inspection, the sub-corpus was found to contain an estimated 473 anthronyms, 7 patronymics, and 82 toponyms, adding up to a provisional total of 562 tokens, or 9.62% of all tokens in the sub-corpus (see Table 1). This percentage is almost doubled if one considers unique tokens instead of all tokens (18.30%).

<table>
<thead>
<tr>
<th>Proper nouns total</th>
<th>Tokens</th>
<th>Unique tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthronyms (N+Ant)</td>
<td>473</td>
<td>345</td>
</tr>
<tr>
<td>Patronymics (N+Pat)</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Toponyms (N+Top)</td>
<td>82</td>
<td>71</td>
</tr>
<tr>
<td>Proper nouns total</td>
<td>562</td>
<td>421</td>
</tr>
<tr>
<td>As percentage of sub-corpus</td>
<td>9.62%</td>
<td>18.30%</td>
</tr>
</tbody>
</table>

Table 1: Quantitative assessment (estimation) of proper nouns in the sub-corpus

The high variability and unpredictability of these categories creates a serious challenge. As an example, the only attestation of the name Երևան Erewan in the sub-corpus, does not refer to the current capital of Armenia, but to an elderly priest. But the main difficulty with processing a proper noun lies in formulating an adequate lemma, owing to the number of different variants, spellings, and paradigms attested in the texts. For instance, the name George appears variously in the sub-corpus as Գորգ Gēorg, Գեորգ Gēorg, and Գորջ Gorg. In addition to such true variants, there is the widespread issue of scribal inconsistency, which cannot always be easily resolved. In the following case, one colophon has as many as four different spellings for the same toponym: Սիւնայվանից Siwnayvanic’, Սիւնեվանից Siwnevanic’, Սիւնէվանից Siwnēvanic’, Սիւնեվանից Siwnevanic’.
and Սիւնիվանք Siwnivank’. These questions, however interesting, outstretch the aims of the present paper and should be dealt with at a later stage.

Specific studies have been devoted to various aspects of linguistic variation in Armenian colophons, focusing principally on the period from the 12th to the 15th century: sound change (Harut’yunyan, 2014b), diachronic morphology (Harut’yunyan, 2014a; Hovsep’yan, 1997), dialectal features (Jahukyan, 1997), neologisms (Margaryan, 1993), anthroponymy (Harut’yunyan, 2018a, 2018b; Weitenberg, 2005), and stylistic patterns (Van Elverdinghe, 2018, 2022). Obviously, these developments of the Middle Armenian idiom are not specific to colophons. Most of them have been described by (Karst, 1901), drawing from literary, legal, medical, etc., texts. Since then, numerous studies have enriched our knowledge of Middle Armenian. (Weitenberg, 1995), dealing with poetical texts, set a blueprint for the investigation of linguistic variation in Middle Armenian sources.

The sub-corpus studied here was selected because it shows a more diverse linguistic picture than a random sampling of Armenian colophons of the same period would. This is due to the fact that many colophons of this group are not written by professional scribes and do not follow the customs and patterns of colophon writing. Therefore, the widespread tendency to normalization and conformity to the rules of Classical Armenian recedes, while the spoken Middle Armenian idiom infiltrates the written medium. This allows for more or less considerable linguistic variation within each colophon.

1.3 Linguistic resources of the GREgORI Project

The automated analysis of this sub-corpus of Armenian colophons was carried out using tools and linguistic data of the (GREgORI Project). The Armenian language shares characteristics of both inflectional and agglutinative languages. As such, inflected simple forms can receive prepositional suffixes as well as determinative suffixes. In their current state, the linguistic resources of the GREgORI Project consist of a set of 315,952 simple word-forms (i.e. inflected words such as աշխատողաց ašxatołac’), on the one hand, and a set of 883,171 polylexical forms (such as աշխատողացաղ աշխատողաց ašxatołac’-n), on the other hand. Together, these two sets totalize 1,199,123 tokens, simple or polylexical, which are recorded along with 30,311 lemmata (lexical entries) and the corresponding part-of-speech of these lemmata. Word-forms are either taken from the corpora already processed in the past or generated automatically (under human supervision) in order to improve, as much as possible, the lexical coverage during the processing of new corpora. The sum of these data constitutes a reference lexicon (Coulie, Kindt, Kepeklian, and Van Elverdinghe, 2022). On that basis, the main goals of the GREgORI Project can be reached, viz to provide scholars with tagged corpora, lemmatized concordances or indexes, and online, searchable corpora.

2. Processing and preliminary evaluation

The processing phase consists in lemmatization, POS-tagging, and inflectional tagging. It is subdivided in three steps, as described in (Kindt, Vidal-Gorène, and Delle Donne, 2022; Vidal-Gorène and Kindt, 2022): 1) analysis by lexical look-up, matching the vocabulary of the corpus with the data gathered in the reference lexicon; 2) analysis using an RNN model; 3) manual check of the analysed data. Only then can scholars be provided with a final, tagged corpus. The first step ensures a highly accurate tagging, but fails to identify unknown words and does not solve lexical ambiguities. The second step resorts to an RNN model previously trained with already processed corpora of the GREgORI Project and applied by Califa to the study of new corpora. In that case, the outcomes are complete, since the process does not disregard unknown words and resolves lexical ambiguity. However, they remain statistical predictions, and not analyses grounded on a common linguistic approach. A considerable advantage to this hybrid approach is that it alleviates the human intervention necessary during the third step, before the final data can be delivered (Kindt, Vidal-Gorène, and Delle Donne, 2022; Vidal-Gorène and Kindt, 2020).

A PDF version of the lemmatized concordance of the sub-corpus is available on the GREgORI website1. The sub-corpus is also available on the online interfaces of the GREgORI Project2.

<table>
<thead>
<tr>
<th>Section A – Main corpus of Armenian colophons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokens</td>
</tr>
<tr>
<td>Unique tokens</td>
</tr>
<tr>
<td>Unique tokens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section B – Sub-corpus of Armenian colophons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokens</td>
</tr>
<tr>
<td>Step 1 – Analysis by lexical look-up</td>
</tr>
<tr>
<td>Lemma = 0</td>
</tr>
<tr>
<td>Lemma > 1</td>
</tr>
<tr>
<td>Lemmata > 1</td>
</tr>
<tr>
<td>Step 2 – Analysis using an RNN model</td>
</tr>
<tr>
<td>Lemma = 1</td>
</tr>
<tr>
<td>Step 3 – Checking results (April 2022)</td>
</tr>
<tr>
<td>Already checked</td>
</tr>
</tbody>
</table>

Table 2: Number of tokens and unique tokens in the Armenian colophons (main corpus and sub-corpus)

Table 2 presents (section A) the number of tokens and unique tokens in the main corpus of Armenian colophons, and (section B) the number of tokens and unique tokens in the sub-corpus of colophons studied in this paper, along with (step 1) quantitative results obtained after the first step of the analysis (number of

1 https://uclouvain.be/fr/instituts-recherche/ical/ciol/gregori-project.html
2 https://www.gregoriproject.com
tokens without lemma, with one lemma, with more than one lemma). For the reasons explained above, the results obtained by RNN (step 2) are equal to the total number of words. Finally (step 3), the current number of already checked results is given.

The lexical analysis of Armenian colophons (main corpus or sub-corpus) is still a work in progress. Most notably, the analysis and lemmatization of proper nouns has been deferred to a later date (see above, 1.2). Nonetheless, the current results already allow using lemmata, POS-tags and inflectional analysis to explore adequately the sub-corpus under consideration. Indeed, tagged data are very helpful in order to describe language variation in the sub-corpus and to single out relevant examples. Many of the 1.263 unknown words (Lemma = 0) highlighted during step 1 (see table 2) are examples of linguistic variation: they bear witness to non-classical strata of the Armenian language that are not yet fully described in the linguistic resources of the GREgORI Project.

3. Selected examples of linguistic variation

The following examples are organized according to the linguistic level at which they occur. They are meant as a representative sample of the different phenomena attested in the corpus, and of their description in the linguistic resources of the GREgORI Project. The issue of which dialect, period, etc., is affected by these variations is too complex to be dealt with here. The same goes for the precise linguistic constraints surrounding these changes. All these examples concern words for which the resources of the GREgORI Project fail to offer an analysis, counted in the 1.263 unknown words (“lemma = 0”) quoted in table 1 (step 1).

3.1 Phonology

At the phoneme level, the language of colophons reflects the general evolution of the Armenian vocalic system, including monophthongization and merger of some sounds (except at the beginning of words), such as: aw (also written ă or a (1)), e (> e (2)). Consonants are subject to multiple variations, among which one can cite, in addition to the well-known consonant shift affecting a number of dialects, the devoicing and aspiration of voiced consonants in certain contexts (3), and the devoicing of final deictic -d (4).

1) H14 681, p. 546 l. 6: սուասապ -ol-ac’ (toucb-AGN-GEN/DAT/ABL.PL) “handlers” (Cl. փոքր սվասի ’ac’)
 = փոքրի սվասի ’ac’
 N+Com:AsNs

2) H15A 699, p. 619 l. 37: ընթաց ’orēn “wheat” (Cl. գնուցնել c’orean)
 = գնուցնել c’orean
 N+Com:AsNs

3) H14 685, p. 549 l. 20: աւաց ավաց “greater, senior” (Cl. աւաց ավաց)
 = աւաց, աւաց

4) H15A 616, p. 543 l. 6: աւետարան awat’k-t (prayer-NOM.PL-that) “your prayers” (Cl. աւետարան awat’k d)
 = աւետարան, ավետարան, N+Com:Np@u,u,PRO+Dem

3.2 Orthography

These sound changes in turn gave rise to incorrect or hypercorrect spellings. For instance, the medieval letter ă, which stands for the old diphthong aw in positions where the latter was monophthongized, is also incorrectly used where aw was actually realized as /av/ (5). Another orthographical feature is the unetymological schwa is occasionally written in positions where, according to the spelling rules of Classical Armenian, it should not appear (6).

5) H14 685, p. 549 l. 19: աւետարան ատերան-s (gospel-this) “this Gospel [book]” (Cl. ւետարան ատերան)
 = աւետարան, ավետարան, N+Com:AsNs@u,u,PRO+Dem

6) H14B 799, p. 447 l. 10: արեստար վերաստ “once again” (Cl. արեստար վերաստ)
 = արեստար, արեստար, I+Adv

3.3 Declension

A number of words undergo paradigmatic reorganization, changing from one thematic paradigm to another (7) or, in the case of irregular paradigms, switching to a regular, thematic paradigm (8; 9). In parallel, several new endings develop, notably plurals in -mjer (10) and locatives in -um (11).

7) H15A 129, p. 128 l. 38: սպասիւք spas-isk’ (service-INSTR.PL) “with [liturgical] vessels” (Cl. սպասիւք, spasuk’)
 = սպասիւք, սպասիւք, N+Com:Hp

8) H13 478b, p. 595 l. 12: փոքր p’ok r-i (small-GEN/DAT/LOC.SG) “small” (Cl. փոքր, p’ok’u)
 = փոքր, փոքր, A:DsGsUs

9) H15A 38, p. 40 l. 34: վանք z-van-er-n (DOBJ-monastery-PL-the) “the monasteries” (Cl. վանք, վանք)
 = վանք, վանք, N+Com:Ap:Np:Up@u,u,PRO+Dem

10) H15C 544, p. 403 l. 28: քանբար k’ver-’ac’ (sister-GEN/DAT/ABL.PL) “sisters” (Cl. քանբար k’erc’)
 = քանբար, քանբար, N+Com:ApDpGp

 = ի, i+Pp, համեր-ե-ամ, N+Com:AsNs@u,u,PRO+Dem

3.4 Conjugation

Similar conjugations characterize the verbal system. Monosyllabic third person singular aorist forms receive an augment in e- or ē- (12), or er- if they already

3 For further information about these linguistic phenomena, the reader is referred to the works cited above (1.2).
had an augment in Classical Armenian. The latter evolution applies, among others, to verb tam “to give”, which even gets a whole new aorist paradigm (13). An important element in the reconfiguration of the verbal system is the emergence of a particle ku (ko / k-) to mark the indicative mood (14).

12) H14 679a, p. 544 l. 35: եզար (AROR.3.SG-strike) “[the sultan] struck” (Cl. եզար զար) իզարդ, զարդարանք V:ElI3s
13) H15A 418b, p. 392 l. 21: զարձ տի-ի (give-AOR.1.SG) “I gave”
= զարձ,զարձ V:ElI1s (Cl. զարձ, զարձ)
= զուծ,զուծ V:ElI1s

3.5 Vocabulary
The vocabulary of colophons includes words not found in classical texts, such as dialectal or colloquial words (15), neologisms (16), and loan-words (17; 18). Purely semantic variations are, as a rule, not recorded by the GREG ORI project.

= զարդար,զարդ V:ElI3s
16) H15A 1*, p. 3 n. 1 l. 5: զուծ նեղ-աչ (sight, narrow) and զուծ աչ-աչ (Cl. աչ աչ) “eyes”
= զուծ,զուծ A
17) H14 593d, p. 484 l. 32: զարձ հալալ “legitimate”, from Arabic ّمٍ (AOR.3.SG)
= հալալ A
18) H14 681, p. 546 l. 16: զարձ Պարոն “sir”, from French Պարոն
= Պարոն N+Com

3.6 Syntax
The syntax of colophons shows a number of peculiarities, some of which are common to other Middle Armenian literary texts. As an example, one can cite the fact that the nominative plural ending -k is increasingly used for the direct object, instead of the accusative plural ending -s (especially with pluralia tantum) (19).

19) H14B 670, p. 296 l. 1: զարձ դրար նանչ նանչ V:ElI3s զարձ կատար-քզ-սանտ ան-կամ-քի-ն “he fulfilled the sultan’s wish” (fulfil-AOR.3.SG DOBJ-sultan-GEN.SG-the will-NOM.PL-the)
= զարձալ,զարձ V:ElI3s
q.q.l=Преп@ անի,անի,անի+N+Com@l,li.PRO+Dem զարձ,զարձ (զարձ) N+Com:Нp@l,li.PRO+Dem

4. Complex variation
In some of the examples given above, more than one feature can be ascribed to linguistic variation. Thus in (14), not only is the particle կ- an innovation, but the verbal lemma itself, ռուձ- կում “to want”, is a Middle Armenian variant of the classical verb ռուձ yezem “to seek”, in which a sound change (loss of the initial glide) coincides with semantic evolution.

Likewise, some lemmata concentrate different instances of variation, as lemmatized concordances readily show. Appendix 9.1 lists the attested tokens of the lemma բերդ bern, one of three words with the meaning of “fortress, castle” in the sub-corpus (the other two being ուղղը amroc’ and լում kla). The words բերդ bern, բերդ bern, բերդ bern, բերդ bern, բերդ bern, բերդ bern, and բերդ bern berderon, and բերդ bern berderon, illustrate the plural formation in -(ն)եր (9)—notice how not a single classical plural form of this lemma is found in the sub-corpus—, while բերդ bern berderon (1) is a case of devoicing and aspiration of a voiced consonant after r (3).

Appendix 9.2 presents a concordance of the lemma ունի bern “to give”, showing several non-classical forms of the active aorist paradigm (13): first person singular ունի tui, third person singular տվեր et and տվեր ēret (12), and first person plural ունի bern towink’ (6) and ունի bern twink’. In addition, the sub-corpus contains an occurrence of the Middle Armenian participal form ունի bern tvac, appearing as part of a periphrastic past tense.

5. Conclusion
The corpus of Armenian colophons constitutes an invaluable collection of texts, both historically and linguistically (Harut’yunyan, 2019; Stone, 1995; etc.). The language of this corpus stands out for its diachronic, diatopic, and diaphasic variation. Therefore, a systematic analysis of the vocabulary of colophons using NLP tools will be helpful to increase our knowledge and understanding of the varieties, evolution, and uses of the Armenian language. The resources of the GREG ORI Project have already facilitated an investigation into the formulaic patterns that characterize the style of Armenian colophons (Van Elverdinghe, 2018, 2022). Lemmatization, POS-tagging, and inflectional tagging of the corpus make it possible to successfully execute complex search queries, such as is required to detect and analyse speech patterns.

The long-term goal is to achieve full lemmatization of the whole corpus of Armenian colophons; in the meantime, applications on more limited sub-corpora like the one under consideration here are expected. Enriching the linguistic resources of the GREG ORI Project with forms found in colophons also represents a step forward towards the treatment of other Middle Armenian texts, especially texts of a documentary nature, such as inscriptions, of which there is already an example on the GREG ORI website (Goepp, Mutafian, & Ouzounian, 2012).

As regards the processing of proper nouns, two avenues could be explored. One relies on manual lemmatization of newly-encountered forms, basing the decisions on reference works such as (Ačaṙ, 1942–1962) for anthroponyms and (Hakobyan, Melik- Başxyan, and Barselyan 1986–2001) for toponyms. The other path entails complete or partial automation of the initial process using an existing dataset. Unfortunately, any corpus designed for modern Eastern Armenian, such as (pioNER, 2018—see Ghukasyan et al., 2018), can hardly be exploited from a Classical or Middle Armenian perspective. The most appealing prospect at this point is the ongoing digitization and
full OCR of Adjarian’s Dictionary of Armenian Personal Names (Ačaṙyan, 1942–1962) by Calfa, which should result in a suitable, if incomplete, dataset of anthroponyms.

A number of annotated corpora are already freely available on the web, such as (Arak-29, since 2002) for Classical Armenian (mainly) or (EANC, 2006–2009) for Modern Eastern Armenian. Nevertheless, Ancient Armenian, generally speaking, remains an under-resourced language. Corpora featuring high-quality lexical tagging and available through interoperable formats are still scarce (Vidal-Gorène and Kindt, 2022; Vidal-Gorène and Decours-Perez, 2020). By processing this corpus, the GREgORI Project, in close connection with Calfa and the UCLouvain, intends to build up its linguistic resources and tailor them to the particular idiom of colophons, a task which is not only essential to a successful study of this textual content, but also paves the way for future research on other medieval Armenian sources.

6. Acknowledgements

Emmanuel Van Elverdinghe is a Postdoctoral Researcher of the Fonds de la Recherche Scientifique – FNRS.

Special thanks are due to Professor Bernard Coutuie (UCLouvain), to Gabriel Kepeklian (UCLouvain), who manages the GREgORI Project’s Armenian resources, and to Chahan Vidal-Gorène (Calfa), who is responsible for implementing an RNN model trained with the data of the GREgORI Project.

7. Bibliographical References

8. Language Resource References

9. Appendix: samples of concordances

9.1 Concordance of the lemma բերդ berd (fortress) in the sub-corpus

բերդ { ... 26 և իմ հալալ արդեանց տվի Մ դեկան, և թափեցի
XV_A 418 2 392 27 որ մեր Դաւայքարու տէր՝ տվինք ի յեկեղեցին Սիւնէվանից,

9.2 Concordance of the lemma տամ tam (to give) in the sub-corpus

տամ { V } (40)

XIV_A 437 3 492 26 ի ձախորդություն այսպես, և լրաց
XIV_A 111 3 121 8 ի ձախ առջևահան իր և լավ ծրագրերը մենք ղեկավար Ռեջու հուշակոթություն
XV_A 699 0 619 37 գիծապատկերը զարմակրություն [...] որ լրաց կդեղ էր
XIV_A 307 0 314 14 ի ծառայություն [...] ի ծառայություն [...] իրավական որոշերը այսպիսի
XIV_B 799 0 447 10 որ չենք տեսվում երկու լրաց
XIV_B 821 0 448 9 ի ժամանակ էր
XIV_B 670 0 295 16 լրաց դեպի թափեցի խոնավություն
XIV_B 585 2 516 16 նորականության փրուկ ամբողջություն
XIV_B 585 0 516 26 ի տեղի օգնություն
XV_A 585 1 518 21 հերոսի Սերթ-Փարք, և տառածվում
XIV_B 593 4 485 5 ի ձախ առջևահան իր
XIV_B 670 0 295 16 գնաց դեպի տառածված խոնավություն
XIV_B 585 2 519 5 մահվան Սերթ-Փարք առանց ժամով՝
XIV_B 799 0 447 10 փրուկ տառածվող [...] ի ծառայություն [...] իրավական որոշերը այսպիսի
XIV_B 821 0 448 9 ի ժամանակ էր
XIV_B 585 2 516 16 լրաց դեպի թափեցի խոնավություն
XIV_B 585 0 516 26 ի տեղի օգնություն
XV_A 585 1 518 21 հերոսի Սերթ-Փարք, և տառածվում
XIV_B 593 4 485 5 ի ձախ առջևահան իր
XIV_B 670 0 295 16 գնաց դեպի տառածված խոնավություն
XIV_B 585 2 519 5 մահվան Սերթ-Փարք առանց ժամով՝
XIV_B 799 0 447 10 փրուկ տառածվող [...] ի ծառայություն [...] իրավական որոշերը այսպիսի
XIV_B 821 0 448 9 ի ժամանակ էր
XIV_B 585 2 516 16 լրաց դեպի թափեցի խոնավություն
XIV_B 585 0 516 26 ի տեղի օգնություն
XV_A 585 1 518 21 հերոսի Սերթ-Փարք, և տառածվում
XIV_B 593 4 485 5 ի ձախ առջևահան իր
Eastern Armenian National Corpus: State of the Art and Perspectives

Victoria Khurshudyan, Timofey Arkhangelskiy, Michael Daniel, Dmitri Levonian, Vladimir Plungian, Alex Polyakov, Sergei Rubakov

INALCO/SeDyL/CNRS/IRD, Universität Hamburg, School of Linguistics / Linguistic Convergence Laboratory, HSE University, Corpus Technologies, Russian Academy of Sciences, Corpus Technologies
65 rue des Grands Moulins, 75013 Paris
victoria.khurshudyan@inalco.fr, timofey.arkhangelskiy@uni-hamburg.de, misha.daniel@gmail.com, dlevonian@gmail.com, plungian@gmail.com, pollex@mail.ru, rubakov@gmail.com

Abstract

Eastern Armenian National Corpus (EANC) is a comprehensive corpus of Modern Eastern Armenian with about 110 million tokens, covering written and oral discourses from the mid-19th century to the present. The corpus is provided with morphological, semantic and metatext annotation, as well as English translations. EANC is open access and available at www.eanc.net.

Keywords: Armenian, corpus linguistics, annotation

1. Introduction

Corpus linguistics (McEnery and Wilsonn, 2001; 2012; Stefanowitsch, 2020; i.a.) started to develop actively only from 1990-ies with the evolution of new technologies facilitating the compilation and processing of different types of corpora. Corpus linguistics is based on empirical data and reflects the language reality throughout all forms of language production.

In corpus linguistics a corpus is defined as a set of texts, and a reference corpus as a balanced and representative set of texts (written discourse) and/or transcripts (oral discourse) varied by different parameters (genre, chronology, original and translated literature etc.), provided by various types of annotation (metatextual, morphological, syntactical etc.) and searchable by various linguistic or pragmatic criteria.

Despite being a language with a multisecular written tradition, Armenian1 is an under-resource language and it lacks significantly digital resources for Natural language Processing (NLP) and linguistic research. Several rare projects for particular Armenian varieties exist, as well as a growing interest in NLP resources is observed.

General purpose untagged Armenian plain texts are represented by a number of open-access online libraries in the Internet offering mainly fiction and press (for a more detailed overview on the existing resources for different Armenian varieties see (Vidal-Gorene et al., 2020)). Often the available data are merely scanned rather than OCRed.

At the time of Eastern Armenian National Corpus (EANC) launching (2006) the availability of Modern Eastern Armenian (MEA) data was quite inadequate with only few e-libraries offering popular fiction with an estimated total volume of about 1 million words. In the available open online resources, non-fiction genres (except press) were often missing. MEA press enjoys better online representation mostly due to online editions of a number of popular Armenian newspapers.

More recently MEA project of Universal Dependencies provides a treebank of about 50K tokens (2502 sentences) with morphological and syntactic annotations in the form of a dependency tree bank (Yavrumyan, 2020; Yavrumyan and Danielyan, 2020).

Currently, several other resources provide MEA plain-text or scanned databases (Armenian Wikipedia and Wikisource (about 50M tokens), Fundamental Scientific Library of the National Academy of Sciences of the Republic of Armenia2 (considerable number of scanned books of different genres as well as press archives), etc.). Rare tools such as spellcheckers and orthography converters exist for the two modern standards. More recently, some NLP research projects have been conducted to address particular NLP issues, such as named entity recognition (Ghukasyan et al., 2018), word embeddings (Avetisyan and Ghukasyan, 2019) or paraphrase detection for Armenian (Malajyan et al., 2020).

Russian National Corpus3 provides an aligned sub-corpus of MEA and Russian on the basis of the translated texts existing in EANC. The sub-corpus is

1 The Armenian language in all its variation encompasses Classical Armenian (5th-10th cen. A.D), preserved exclusively for canonical uses, Middle Armenian (11th-17th cen.), and Modern Armenian (17th cen. – up to present) with its two standards: Modern Eastern Armenian (the official language of the Republic of Armenia, which is also the language of the Armenian communities of Iran and the ex-Soviet republics) and Modern Western Armenian (spoken by traditional Armenian communities in Europe, the Americas and the Middle East originating mainly from the Ottoman Empire), both standardized in the 19th cen. Aside from the two standards, the Armenian language continuum includes various dialects, as well as vernacular forms. All the written varieties of the Armenian language use the unique Armenian alphabet.

2 https://arar.sci.am/

provided with full morphological annotation for both languages and it covers about 2,4M tokens. In contrast to the written discourse, MEA oral data is rarely available for research. During the last years several projects elaborating MEA Automatic speech recognition (ASR) models\(^4\) came out. As of today, EANC is the largest Armenian resource.

1. EANC Overview

The project of Eastern Armenian National Corpus (www.eanc.net) was launched in 2006 (the current version corresponding to the third release as of 2009) by a group of linguists and it was supported by Corpus Technologies, a Moscow-based NLP development company. EANC is designed as a comprehensive corpus with about 110 million tokens, covering Modern Eastern Armenian written and oral discourses from the mid-19th century to the present. The texts/transcripts have morphological, semantic and metatext annotation and they are provided by English translations for frequent tokens searchable for making complex lexical morphological queries. EANC is an open access corpus available at www.eanc.net. EANC proposes also an electronic library (scanned and processed entirely by the EANC team) with full-view access for over hundreds of works by classical authors in public domain. The library provides the same morphological analysis and translation as the rest of the corpus (displayed on mouse click). Due to copyright considerations, the search function in the main corpus does not provide access to the texts in their entirety. The term “national”; included in the name of EANC, has a terminological rather than emotional value. After British National Corpus,\(^5\) the concept of a “national corpus” has come to designate a comprehensive and representative corpus of a language: cf. Russian National Corpus,\(^6\) Czech National Corpus,\(^7\) Georgian National Corpus,\(^8\) among others. It is in this sense that the Eastern Armenian National Corpus qualifies as a national corpus of a language.

2. EANC Composition

EANC is designed as a comprehensive corpus with the objective to include as many MEA texts as practicable – all literary, scientific and oral texts available to us have been indexed for search. The only exception to this is certain widely-available texts, such as electronic press and legal documents, whose presence has been limited for the sake of balance among different genres. Due to its comprehensive nature, EANC is inherently different from the high-resource languages’ corpora such as Russian National Corpus or British National Corpus which choose their collections selectively. BNC additionally imposes a limit on the number of words per document, truncating longer texts. EANC, on the other hand, includes a great majority of all extant Eastern Armenian literary texts. In this respect, EANC is similar to Czech National Corpus, Slovak National Corpus\(^9\) or Georgian National Corpus. The vast majority of EANC written texts except press are obtained through scanning and OCRing scanned materials using ABBYY Fine Reader 8.0. Most of the EANC press corpus was downloaded from open electronic archives of the newspapers that provide access to such archives (e.g. www.azg.am, www.aravot.am, www.yerkir.am, www.iravunk.com etc.).

<table>
<thead>
<tr>
<th>Written discourse</th>
<th># tokens</th>
<th>% EANC</th>
<th># of docs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prose: novels</td>
<td>29 729 521</td>
<td>27,1%</td>
<td>366</td>
</tr>
<tr>
<td>prose: short stories</td>
<td>5 888 695</td>
<td>5,4%</td>
<td>158</td>
</tr>
<tr>
<td>prose: plays</td>
<td>1 411 030</td>
<td>1,3%</td>
<td>55</td>
</tr>
<tr>
<td>prose subtotal</td>
<td>37 029 246</td>
<td>33,7%</td>
<td>579</td>
</tr>
<tr>
<td>poetry</td>
<td>3 627 119</td>
<td>3,3%</td>
<td>208</td>
</tr>
<tr>
<td>Press</td>
<td>47 264 735</td>
<td>43,0%</td>
<td>7858</td>
</tr>
<tr>
<td>Oral discourse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral spontaneous discourse</td>
<td>1 029 646</td>
<td>0,94%</td>
<td>208</td>
</tr>
<tr>
<td>Oral public discourse</td>
<td>1 933 899</td>
<td>1,76%</td>
<td>543</td>
</tr>
<tr>
<td>Oral task-oriented discourse</td>
<td>70 010</td>
<td>0,06%</td>
<td>22</td>
</tr>
<tr>
<td>Oral total</td>
<td>3 475 954</td>
<td>3,2%</td>
<td>774</td>
</tr>
<tr>
<td>EANC Total</td>
<td>109 827 951</td>
<td>100%</td>
<td>9 891</td>
</tr>
</tbody>
</table>

Table 1: EANC composition by genre

About 1 million tokens of texts have been downloaded from public electronic collections (www.armenianhouse.org, www.haveren.hayastan.com etc.).

EANC includes written texts of various genres (over 106M tokens) such as fiction, press, poetry, non-fiction, etc., as well as a diversified corpus of oral speech (about 3,5M tokens) (see Table 1). EANC includes not only all school reading texts in today’s Armenian secondary school program, but the vast majority of MEA classical literature starting from mid-19th century, a large number of scientific texts (including the 13-volume Armenian Soviet Encyclopaedia 1974-1987).

\(^5\) www.natcorp.ox.ac.uk

\(^6\) www.ruscorpora.ru

\(^7\) https://wuny.ff.cuni.cz

\(^8\) http://gnc.gov.ge

\(^9\) https://korpus.sk
Each of the 9,960 document entries in EANC is labeled by metatext information specifying genre and other bibliographic details (e.g. date of creation/publication, name of the author, etc.).

Oral discourse in EANC is represented by the Yerevan standard which is justified by the fact that it is the closest spoken dialect to Modern Eastern Armenian, the language of the written sub-corpus and which historically served as a spoken prototype for the MEA literary tradition. The entire oral discourse corpus has been recorded and transcribed within the framework of the EANC project.

Oral public discourse (about 2M tokens) is originally recorded in video format and includes various recordings of TV programs, talk shows, public debates, interviews, etc. broadcasted by Armenian TV stations. Audio data are then extracted and stored as audio files. Oral spontaneous discourse and task-oriented discourse are recorded in audio format (.mp3 or .wav). The respondents are speakers of the Yerevan standard and are selected in an attempt to obtain a balanced mix of age, gender, and social status. The corpus of oral spontaneous discourse (over 1M tokens) includes spontaneous polylogues, dialogues and diverse narratives. The corpus of task-oriented discourse (about 70,000 tokens) covers favorite film narratives and cartoon narratives.

Currently, EANC oral discourse corpus uses a plain transcription which basically follows traditional Armenian orthography and punctuation standards. Only few additional special tags are used: == for falsestarts, = for fragmented words, among other tags.

3. Annotation and Grammatical Wordlist EANC Composition

All the annotation information enhances the EANC search capability by allowing the user to build and search sub-corpora and to sort the search results. Three major layers of markup are implemented in EANC:

1. Metatext (bibliographic) markup is assigned to each text unit and includes such metatext information as author, title, year of creation, and genre (genres) etc.

2. Token markup includes lexical and morphological markup assigned to over 90% of tokens as well as English translations for about 85% of tokens. Every token (wordform) in EANC is supplied with a set of lexical morphological tags (labels). These tags cover grammatical categories applicable to MEA (part of speech, case, number, determination, tense-aspect-mood, polarity, inflection type etc.). EANC tagging system follows the Leipzig Glossing Rules (as of 2015) as closely as possible (see Annexe 1: EANC grammatical tags). Few solutions have been made that may appear controversial, but these are mainly connected to controversial or understudied phenomena in Armenian grammar itself (such as interpreting dative / genitive and desinative / dative infinitive syncretism or the morphological composition of relational forms of nouns, such as որոշում). The third markup layer covers punctuation, sentence boundaries, and auxiliary markup options. Linguistic background of the project comprises two main components – the wordlist and a morphological model (inflectional classification).

The EANC wordlist is based on a combination of the wordlist of E. Galstian’s Armenian-Russian dictionary (1985) and part of E. Aghai'an's dictionary of Modern Armenian (1976) (over 70,000 entries), the wordlist of H. Grgjevan and N. Harutyunyan's dictionary of geographic names (1987-1989) (about 4,000 entries), a list of common first names and family names (about 1000 entries), abbreviation wordlist from D. Gyurjevian and N. Hekjian’s dictionary of acronyms used in Armenian (2007) (about 2000 entries). Additionally, the EANC wordlist includes a limited number of lexemes, such as neologisms, that occur in EANC but are missing from the sources above. Such lexemes were added manually on the basis of the list of non-annotated words filtered by their frequency in EANC.

To make lemmatization possible a morphological model with a formal and exhaustive classification of MEA inflection types for both nominal and verbal categories was worked out. Each inflectable lexeme in the EANC wordlist was then assigned a specific tag corresponding to the relevant inflection type (e.g. N11, N12, V11, V12 etc.). Comprising a wordlist and providing an internationally-compatible inventory of morphological categories was mainly a technical task. The main challenge has been to work out a formal morphological model of Modern Eastern Armenian inflection that would be comprehensive enough to cover most of the corpus tokens. In other words, each lexeme that inflects had to be provided with information about its paradigmatic type (or types, in case of inflectional variance) that predicts its forms. This challenge may seem unexpected, provided a long tradition of Armenian studies. However, the conventional grammars of Eastern Armenian proved not to be formal enough for an automatic analysis (lemmatization) of EANC electronic library, which is quite justifiable because conventional grammars serve a purpose other than automatic processing (mostly educational).

By way of example, the current inflectional classification of MEA nouns used in EANC includes 45 types, nine of which could be considered as subtypes and grouped into nine larger classes, which roughly correspond to conventional declensions. Some types are different from others by vowel reduction or, for nouns, plural formation, which cross-cuts the whole system of MEA nominal inflection; some classes are not real declensions, being limited to few lexemes only. The full list of types is available at the project site and covers all or, strictly speaking, all the cases of inflection known. In addition, several grammatical features, such as formal and / or gender, personal and / or possessive, and so on, are covered. The full list of types is available at the project site.

The inflectional classification of MEA applied is based on orthography, and, thus, more of an applied linguistic than a purely linguistic project (although a speech-oriented linguistic classification may be obtained relatively easily).

Figure 3:
One of the challenges has been analysing orthographic variants widespread in MEA texts, including old writings or Western Armenian inserts. The markup was designed to allow to find regular and deviant orthographic variants in one same query, as well as tokens using non-standard orthography. Supplemented with part-of-speech and inflectional information, the EANC wordlist became a grammatical e-dictionary, similar to those used by Internet search engines for other morphologically rich languages.

4. Software

EANC database software consists of four major parts: parser, indexer, server and user interface and client. The collection of raw electronic texts is first processed by EANC Parser (a PERL program), which adds XML-compliant or tab-delimited metatext and token markup. Next, the resulting files are processed by the Indexer to create the corpus database structure. Server implements search and sorting algorithms in the corpus database. Finally, User interface and Client provide web access to the EANC database and its search functionality.

The EANC Parser assigns token markup tags to each wordform, provided that the respective lexeme is present in the EANC grammatical wordlist. Overall, 92,5% of all tokens are recognized and annotated with 72,6% analyzed unambiguously, 17% ambiguously, and 7,5% not recognized. Parsing success rate varies depending on a genre. The highest percentage of unrecognized tokens occurs, unsurprisingly, in oral discourse.

![Figure 3: EANC database software](image)

Some wordforms have multiple analysis. For example, the forms for infinitive and perfective converb in MEA are regularly homonymous for the -ii (-e) conjugation certainly not of last importance either. Currently, classical spelling is used for MWA and by the Armenian community in Iran for MEA, whereas reformed spelling is applied in Armenia and other Eastern Armenian communities.
type (գրել grel ‘to write’). An example of an occasional homonymy is հարգի hargi ‘respectable’: it is analyzed both as an adjective and as a subjunctive, 3rd person, present of the verb հարգել hargel ‘to respect’. This lexical morphological homonymy, both regular and coincidental, is quite common in MEA, the overall percentage of tokens with multiple analysis being as high as about 12%. Currently, EANC parser deals exclusively with the wordform, completely ignoring their context. The noise level can be cut down by adding specific constraints to the query, e.g. by introducing another wordform that is supposed to co-occur with the relevant reading.

Indexer is a PHP+MySQL program that extracts address information for each token and each markup element from the XML output provided by the EANC **Parser**. The output of **Indexer** is a set of hash tables that establish a pointer connection between each unique lexeme, wordform and grammatical attribute occurring in EANC, and their respective positions (addresses) in the corpus data files. The corpus data files represent a non-relational database consisting of binary address arrays. Sorting keys for each token are also stored in the data files. This allows sorting output contexts by specific key criteria, such as alphabetically, by period/genre, etc.

Server is a C++ program which implements core search algorithms over the corpus data files via the ISAM method. Search algorithms are designed to minimize response time for most common queries. Given the size of EANC (well over 100M tokens), response time may exceed the standard 0.5-0.8 second threshold for some contextual queries such as searching for complex collocation sequences of frequent gram attributes.

Many queries may correspond to a large number of matches in EANC; however, only up to 10,000 matches are displayed to the user. These 10,000 are drawn from various parts of the Corpus proportionally to the way *all* matches are distributed throughout EANC, so as to form a representative sample (if a sub-corpus has been defined, the same distribution sampling is performed over the sub-corpus).

EANC user interface is a PHP/HTML program that provides user access to the full search functionality of the server. Visually, the user interface is a collection of browser windows, including: Search form appearing on the right side of the EANC web page, gram selection form, sub-corpus selection form, display options form, search output area and a number of auxiliary windows such as virtual Armenian keyboard.

The main search form is the central element of the EANC user interface. It is used to build various types of queries (e.g. for a lexeme or a wordform, gram attributes, punctuation, case-sensitivity etc.). When the user defines a search query, the user interface transmits that query to **Client**. **Client** is a PHP program that pre-processes user input in the User interface, builds and sends a query to **Server**, and then receives and post-processes the search output. **Client** is also responsible for more advanced interface operations, such as displaying token markup or transliterating the output. The grammatical wordlist of MEA is used by the parser, EANC corpus software that ascribes each token a lexical morphological analysis.

Apart from the parser EANC software is designed as a scalable and a language-independent software platform for corpus studies. The system is built in a way that corpora of structurally different languages can be indexed and made available for search provided that such corpora follow the specific XML markup standards developed by Corpus Technologies (cf. in 2011-2017 EANC software was used for Albanian, Ossetic, Buryat, Mongolian, Kazakh corpora[12]).

Morphological analysis in general can be either rule-based or statistical. In case of statistical analysis certain amount of training data (100,000-1,000,000 words) is annotated manually on which a smart algorithm is trained which finally learns and provides the rules to annotate texts. One of the advantages of this method is the possibility to analyze previously unseen words, thus no dictionary is required. This mode of analysis is popular for large languages and the more fine-grained the tagset, the larger the training dataset is needed.

![Figure 4: EANC annotated example](image)

Current EANC morphological analysis is rule-based with manually compiled dictionary and morphological rules that the analyzer applies to the text. Such analysis results in ambiguous analyses since words are analyzed regardless of context and out-of-vocabulary words are not recognized. Rule-based analysis is advantageous for adding dictionary lexical information (e.g. translations, animacy, diathesis etc.) and it does not require training data. However, the description format is not really transparent, as it only provides grammatical tags rather than glossing, which is a standard in typology and many other linguistic subdisciplines.

![Figure 5: Example with standard typological glossing](image)

By the initiative of Timofey Arkhangel’skiy and Aleksei Fedorenko the existing analyzer was improved and updated. The rules of the analyzer were rewritten in a format allowing glossing (Uniparser); the vocabulary was converted automatically, whereas

[12] http://web-corpora.net/
the inflection was rewritten manually. Certain procedures were applied to prepare stem glosses. Importantly, the analyzer\(^{13}\) is now open source (MIT license).

The analyzer was tested on about 10 million tokens from EANC. The test dataset included 19\(^{th}\) and 20\(^{th}\) century fiction, press, scientific literature, as well as oral discourse. The test proved 93% coverage (not including tokens in non-Armenian script) and 1,25 ambiguity analysis per analyzed word. The updated test dataset was published through tsakorpus\(^{14}\) corpus platform. The objective is to move entire EANC to tsakorpus.

5. Search Functionality and Display Options

EANC was designed first as an instrument of linguistic analysis and thus has to provide efficient tools of looking for linguistic information. EANC allows to make token queries by wordforms (e.g. տուն, man.SG.NOM), lexemes (e.g. տան, tun, dative singular disable), and English translation (e.g. man) or queries based on a specific grammatical attribute or a combination of attributes (e.g. passive imperfective converbs or searching for the contexts using the verb

The most fascinating (and, in terms of software support, the most challenging) query option is a context query, a combination of several token queries. Using a context query, the use of the corpus may look for co-occurrences of tokens defined in each token query included in the context query in the same context. Co-occurrence is subject to distance limitations which may require that tokens occur next to each other (default option), at a distance between two values specified, simply within the same sentence, or in different sentences in the document.

Examples of context queries include, for instance, searching for a noun preceded by a genitive and an adjective, perfective converbs followed by any wordforms of the stative verb *finish* in the 19\(^{th}\) and 20\(^{th}\) centuries.

The most interesting (and, in terms of software support, the most challenging) query option is a context query, a combination of several token queries. Using a context query, the use of the corpus may look for co-occurrences of tokens defined in each token query included in the context query in the same context. Co-occurrence is subject to distance limitations which may require that tokens occur next to each other (default option), at a distance between two values specified, simply within the same sentence, or in different sentences in the document.

Examples of context queries include, for instance, searching for a noun preceded by a genitive and an adjective, perfective converbs followed by any wordforms of the stative verb *finish* in the 19\(^{th}\) and 20\(^{th}\) centuries.

6. Objective and Target Audience

Current state of Armenian studies requires new approaches and linguistic tools to validate key empirical hypotheses and findings as well as to expand the field of research. Corpus-based approach will allow revisiting the aspects of the traditional grammar that have not been sufficiently studied and will facilitate developing new descriptive and theoretical concepts.

EANC provides linguists with a searchable annotated database of MEA. EANC includes empirical linguistic data ranging from classical standard Eastern Armenian literature to Yerevan street talk recorded and transcribed in 2008. EANC also provides a researcher with an option to build a user-defined sub-corpus, such as a single author sub-corpus, or a sub-corpus containing specific genres and/or periods. Since EANC provides samples of actual MEA usage across periods, genres, and discourse formats, it can also be used as a powerful educational resource. English translations are provided for about 85 percent of the tokens, facilitating the use of the corpus by non-native speakers, e.g. Armenian language learners. EANC can also be used in various fields such as literature and culture studies, journalism, history, and others.

Importantly, EANC is as much about corpus linguistics as it is about Armenian studies. The EANC team aimed to build a modern flexible linguistic database that can be used as a platform for creating corpora of other languages, exploring statistical approaches to language description, as well as applying natural language processing methods.

7. Problems and Perspectives

A major problem of the EANC is the presence of numerous mistakes in optical character recognition. Wrong or impossible spellings result in losing hits and/or returning wrong hits. A number of procedures have been implemented to increase the accuracy,

\(^{13}\) https://bitbucket.org/timarkh/uniparser-grammar-eastern-armenian

\(^{14}\) https://github.com/timarkh/tsakorpus
including human-assisted proofreading of the most important texts.

As mentioned above, most of the press corpus has been downloaded from the open electronic archives, which means that these periodicals are extremely over represented in EANC.

An important problem is the absence of syntactic and morphosyntactic markup. MEA is rich in periphrastic constructions in verbal morphology which are ignored by the parser. One of the perspectives of the project could be the implementation of basic collocation markup, including markup of auxiliary verb constructions. Now, querying these constructions is only possible indirectly (such as submitting context queries for converses plus the verb ‘to be’, although these queries are obviously not enough restrictive).

Ignoring the context also leads to significant number of ambiguous cases in parsing results, which, for some queries, is a strong ‘noise’ factor. One of the solutions is human-assisted ambiguity removal.

In some cases, the two (or more) grammatical analyses of a wordform are by far not equally probable. It is possible to decrease the probability rank for less probable analyses depending on the context. Applying statistical procedures may be used to decrease the rank of morphosyntactic interpretations that are impossible or improbable in some contexts of targets. For selected highly frequent cases of an extremely improbable homonymy, second readings have already been eliminated (e.g. the locative *asum* from the noun *as*).

Another useful development prospective would be allowing for context output provided with morphological glossing, more convenient for users coming from the field of linguistic typology and ready-to-use in typological publications which is already integrated in the updated version.

Providing the wordlist with phonetic tags indicating orthographically unpredictable phenomenon such as devoicing vs. non-devoicing after sonorants or between vowels or shwa insertion, orthographically would be a useful addon. Ultimately, that will provide a tool to show phonetic transcription of the word and wordform.

More detailed oral discourse transcription which requires serious theoretic background would also be a precious extension for the oral sub-corpus. Discourse transcription segments discourse into units with time synchronization for each unit; designates pauses, both silent (i.e. complete absence of verbal expression) and filled pauses (cf. English ‘um’, ‘uh’ etc.); and tracks other phenomena peculiar to oral discourse, e.g. parceling, embeddings, discourse markers, etc. The transcripts should also be synchronized with light versions of audio files so that the user may not only read the transcript but also listen to the original audio.

An attempt of dialect corpus was made in the framework of EANC research grant project during 2008-2009. Interviews and narratives in three dialects of Armenian (1. Arcvaberd dialect (Shamshadin, Tavush region), 2. Shenavan dialect (Aparan, Aragatsotn region), 3. Gusana dialect (Maralik, Shirak region)) were collected and transcribed by three postgraduate grantee students in Yerevan. The target size of each corpus is 15 hours of recordings or about 100,000 tokens. The data is lemmatized and is available for online search similar to EANC.15

One of the most important developments of Armenian corpus processing is to have a multivariational with all the diachronical stages of the Armenian language on the one hand (Classical Armenian, Middle Armenian, Modern Armenian), and the language varieties of Modern Armenian continuum (Modern Armenian, Armenian dialects, oral standards).

To address the existing drawbacks and outlined perspectives mentioned above, the project Digitizing Armenian Linguistic Heritage: Armenian Multivariational Corpus and Data Processing (DALiH)16 was designed. The project aims at building for the first time an open-access and open-source unified digital linguistic platform for the whole spectrum of Armenian language variation. Each language variety will be represented by a comprehensive corpus which will be provided with full morphological annotation. More particularly, DALiH will be the first to design six new annotated corpora for 1) Classical Armenian; 2) Modern Western Armenian; 3) a pilot corpus of Middle Armenian; 4) three pilot corpora of dialects, and 5) one updated Modern Eastern Armenian corpus on the basis of EANC.

More particularly, the following updates will be proposed for MEA:

a. EANC database will be completed by compilation of new texts (10M tokens of various genres, about 50M tokens coming from Wikipedia and Wikisource, about 200M tokens from general Google database);

b. EANC rule-based annotation model will be accompanied by RNN, transformer-based and hybrid models in order to attain the ambiguity and to provide context-based (hence future syntactic) annotation;

c. EANC grammatical dictionary will be updated with new lexemes compiled from the most frequent unrecognized tokens of the corpus;

d. golden standard annotated written and oral corpora will be provided;

e. EANC oral sub-corpus will be sound-aligned;

f. ASR model will be elaborated on the basis of the aligned oral corpus.

DALiH started in April 2021 and the project will be launched in 2025.

8. Bibliographical References:

The project DALiH is funded by French National Research Agency ANR-21-CE38-0006.

15 http://web-corpora.net/EANC_dialects/search/

<table>
<thead>
<tr>
<th>#</th>
<th>EANC Tag</th>
<th>Description</th>
<th>Traditional Armenian Label</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parts of Speech</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>Noun</td>
<td>Գոյական</td>
<td>նահանգ</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Adjective</td>
<td>Ածական</td>
<td>գեղեցիկ</td>
</tr>
<tr>
<td>3</td>
<td>V</td>
<td>Verb</td>
<td>Բայ</td>
<td>կարդալ</td>
</tr>
<tr>
<td>4</td>
<td>ADV</td>
<td>Adverb</td>
<td>Մակբայ</td>
<td>արագ</td>
</tr>
<tr>
<td>5</td>
<td>NUM</td>
<td>Numeral</td>
<td>Թվական</td>
<td>երեք</td>
</tr>
<tr>
<td>6</td>
<td>PRON</td>
<td>Pronoun</td>
<td>Դերանուն</td>
<td>ես</td>
</tr>
<tr>
<td>7</td>
<td>PREP</td>
<td>Preposition</td>
<td>Կապ</td>
<td>առանց</td>
</tr>
<tr>
<td>8</td>
<td>POST</td>
<td>Postposition</td>
<td>Կապ</td>
<td>մեջ</td>
</tr>
<tr>
<td>9</td>
<td>CONJ</td>
<td>Conjunction</td>
<td>Սաղկապ</td>
<td>և</td>
</tr>
<tr>
<td>10</td>
<td>PART</td>
<td>Particle</td>
<td>Եղանակավորող բառեր</td>
<td>թերևս</td>
</tr>
<tr>
<td>11</td>
<td>INTJ</td>
<td>Interjection</td>
<td>Ձայնարկություն</td>
<td>վա՜յ</td>
</tr>
<tr>
<td>Parts of Speech: lexical subcategories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>S</td>
<td>Independent pronouns</td>
<td>Անկախ դերանուն</td>
<td>նա</td>
</tr>
<tr>
<td>13</td>
<td>Dem</td>
<td>Demonstrative pronoun</td>
<td>Ցուցակային դերանուն</td>
<td>այդ</td>
</tr>
<tr>
<td>14</td>
<td>Intrg</td>
<td>Interrogative pronoun</td>
<td>Հարցական դերանուն</td>
<td>ինչ</td>
</tr>
<tr>
<td>15</td>
<td>Hum</td>
<td>Human noun or pronoun</td>
<td>Անձի առում</td>
<td>մարդ</td>
</tr>
<tr>
<td>16</td>
<td>Anim</td>
<td>Animate noun or pronoun</td>
<td>Շնչավոր</td>
<td>գայլ</td>
</tr>
<tr>
<td>17</td>
<td>Inanim</td>
<td>Inanimate noun or pronoun</td>
<td>Անշունչ</td>
<td>սեղան</td>
</tr>
<tr>
<td>18</td>
<td>Coll</td>
<td>Collective noun</td>
<td>Հավաքական գոյական</td>
<td>խումբ</td>
</tr>
<tr>
<td>19</td>
<td>Topn</td>
<td>Toponym</td>
<td>Տեղանուն</td>
<td>Հայաստան</td>
</tr>
<tr>
<td>20</td>
<td>Persn</td>
<td>First name</td>
<td>Անձնանուն</td>
<td>Արմեն</td>
</tr>
<tr>
<td>21</td>
<td>Famn</td>
<td>Family name</td>
<td>Ազգանուն</td>
<td>Պետրոսյան</td>
</tr>
<tr>
<td>22</td>
<td>Abbr</td>
<td>Abbreviation</td>
<td>Հապավում</td>
<td>ԱՊՀ</td>
</tr>
<tr>
<td>23</td>
<td>Card</td>
<td>Cardinal numeral</td>
<td>Քանակական թվական</td>
<td>երեք</td>
</tr>
<tr>
<td>24</td>
<td>Tr</td>
<td>Transitive verb</td>
<td>Անցողական բայ</td>
<td>տալ</td>
</tr>
<tr>
<td>25</td>
<td>Intr</td>
<td>Intransitive verb</td>
<td>Անանցողական բայ</td>
<td>վազել</td>
</tr>
<tr>
<td>Nominalization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Inf</td>
<td>Infinitive</td>
<td>Անորոշ դերբայ</td>
<td>կարդալ</td>
</tr>
<tr>
<td>27</td>
<td>Rel</td>
<td>Relational noun</td>
<td>-</td>
<td>ընդհանուր</td>
</tr>
<tr>
<td>28</td>
<td>Nmlz</td>
<td>Nominalized attribute (adjective, participle, genitive)</td>
<td>Գոյականացված (ածական, կարդացած, սեռական)</td>
<td>գեղեցիկը, կարդացածը, սեռականը</td>
</tr>
<tr>
<td>Case</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Nom</td>
<td>Nominative</td>
<td>Ուղղական</td>
<td>քաղաք</td>
</tr>
<tr>
<td>30</td>
<td>Gen</td>
<td>Genitive</td>
<td>Սեռական</td>
<td>քաղաքի</td>
</tr>
<tr>
<td>31</td>
<td>Dat</td>
<td>Dative</td>
<td>Տրական</td>
<td>քաղաքին</td>
</tr>
<tr>
<td>32</td>
<td>Abl</td>
<td>Ablative</td>
<td>Բացառական</td>
<td>քաղաքից</td>
</tr>
<tr>
<td>33</td>
<td>Ins</td>
<td>Instrumental</td>
<td>Գործիական</td>
<td>քաղաքով</td>
</tr>
<tr>
<td>34</td>
<td>Loc</td>
<td>Locative</td>
<td>Ներգոյական</td>
<td>քաղաքում</td>
</tr>
<tr>
<td>#</td>
<td>EANC Tag</td>
<td>Description</td>
<td>Traditional Armenian Label</td>
<td>Example</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>35</td>
<td>Sg</td>
<td>Singular (nouns, pronouns or verbs)</td>
<td>Եզակի</td>
<td>քաղաք Երևան</td>
</tr>
<tr>
<td>36</td>
<td>Pl</td>
<td>Plural (nouns, pronouns or verbs)</td>
<td>Հոգնակի</td>
<td>քաղաքներ Երևան</td>
</tr>
<tr>
<td>37</td>
<td>ApI</td>
<td>Associative plural (nouns and pronouns)</td>
<td>հավաքական անեզական որոշյալ Վարդանանց</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Def</td>
<td>Definite form of a noun</td>
<td>Որոշյալ քաղաքը</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Poss1</td>
<td>First person possessed noun</td>
<td>Ստացական հոդ 1 քաղաք</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Poss2</td>
<td>Second person possessed noun</td>
<td>Ստացական հոդ 2 քաղաք</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Sup</td>
<td>Superlative</td>
<td>ամենագեղեցիկ Վարդանանց</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Cvb</td>
<td>Converb</td>
<td>Դերբայ</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Sim</td>
<td>Simultaneous converb</td>
<td>Անկատար դերբայ II կարդալիս</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Ipfv</td>
<td>Imperfective converb</td>
<td>Անկատար դերբայ I կարդում</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Pfv</td>
<td>Perfective converb</td>
<td>Վաղակատար դերբայ կարդացել</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Des</td>
<td>Destinative (future converb)</td>
<td>Ապառնի I կարդալու</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Conneg</td>
<td>Connegative converb</td>
<td>Ժխտական դերբայ կարդա</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Ptcp</td>
<td>Participle</td>
<td>Դերբայ</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Sbj</td>
<td>Subject participle</td>
<td>Ենթակայական դերբայ կարդացող</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Res</td>
<td>Resultative participle</td>
<td>Հարակատար դերբայ կարդացած</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Caus</td>
<td>Causative (morphological)</td>
<td>Պատճառական վախեցնել</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Med</td>
<td>Medial (passive)</td>
<td>Կրավորական կառուցվել</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Pres</td>
<td>Present</td>
<td>Ներկա է</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Past</td>
<td>Past</td>
<td>Անցյալ էր</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Aor</td>
<td>Aorist</td>
<td>Անցյալ կատարյալ կարդաց</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Sbjv</td>
<td>Subjunctive</td>
<td>Ըղձական կարդա՛</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Cond</td>
<td>Conditional</td>
<td>Պայմանական կկարդա</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Imp</td>
<td>Imperative</td>
<td>Հրամայական կարդա՛</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Neg</td>
<td>Negative form of a verb</td>
<td>Ժխտական չկարդաց</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>1st person category</td>
<td>Առաջին դեմք եմ</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>2</td>
<td>2nd person category</td>
<td>Երկրորդ դեմք ես</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>3</td>
<td>3rd person category</td>
<td>Երրորդ դեմք է</td>
<td></td>
</tr>
</tbody>
</table>
Towards a Unified ASR System for the Armenian Standards

Samuel Chakmakjian1,2, Ilaine Wang2
1SeDyL (CNRS-Inalco), 2ERTIM (Inalco)
7 rue Guy Môquet 94800 Villejuif, 2 rue de Lille 75007 Paris
\{samuel.chakmakjian, ilaine.wang\}@inalco.fr

Abstract

Armenian is a traditionally under-resourced language, which has seen a recent uptick in interest in the development of its tools and presence in the digital domain. Some of this recent interest has centred around the development of Automatic Speech Recognition (ASR) technologies. However, the language boasts two standard variants which diverge on multiple typological and structural levels. In this work, we examine some of the available bodies of data for ASR construction, present the challenges in the processing of these data and propose a methodology going forward.

Keywords: speech corpus, ASR, forced alignment

1. The Problem

Armenian is a traditionally under-resourced language, which has seen a recent uptick in interest in the development of its tools and presence in the digital domain. Some of this recent interest has centred around the development of Automatic Speech Recognition (ASR) technologies. However, the language boasts two standard variants which diverge on multiple typological and structural levels.

1.1. A Tale of Two Phonologies

This structural divide is the most salient at a phonetic-phonological level, with Standard Eastern Armenian’s (SEA) phonemic inventory containing 36 phonemes (30 consonants, 6 vowels), and Standard Western Armenian’s (SWA) inventory being comprised of 30 phonemes (24 consonants, 6 vowels).

The vocalic systems of SEA and SWA are largely the similar, with the five cardinal vowels /i, e, a, o, u/ and a mid-central vowel /a/. The consonant systems share the same nasals, fricatives, and approximants (/m, n, f, v, s, z, ž, ž, ṡ, ṡ, ṝ, ʰ, j, l/). SEA distinguishes between two rhotics, a tap /ɾ/ and a trill /r/, whereas SWA does not make such a distinction. The most problematic feature of the divergence in phonologies however, is that of the plosive and affricate series in SWA and SEA. SEA’s plosive and affricate phonemes have a three-way voicing distinction: voiced, voiceless, and voiceless aspirated. Modern SWA has a two-way voicing system of voiced and voiceless aspirated. The plosive and affricate phonemes of SEA are therefore the following: /b, p, pʰ, d, t, tʰ, g, k, kʰ, dz, ts, tsʰ, dʒ, tʃ, tʃʰ/, and the plosive and affricate phonemes of SWA are as follows: /b, pʰ, d, tʰ, g, kʰ, dz, tsʰ, dʒ, tʃʰ/.

Table 1 provides an example of the diverging phonetic realisations of three similar items.

<table>
<thead>
<tr>
<th>Item</th>
<th>SEA</th>
<th>SWA</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>թաթեն (placenta)</td>
<td>[pʰar]</td>
<td>[pʰar]</td>
<td>'placenta'</td>
</tr>
<tr>
<td>սպեշ (word)</td>
<td>[bur]</td>
<td>[bʰar]</td>
<td>'word'</td>
</tr>
<tr>
<td>երկրաշար (dance)</td>
<td>[pur]</td>
<td>[bur]</td>
<td>'dance'</td>
</tr>
</tbody>
</table>

Table 1: Three words and their pronunciations in SEA vs. SWA

1.2. Towards a Multivariant Culture

Despite this divergence in phonemic inventories, many factors render a unified system preferable. The two variants share a writing system and base lexicon, and while the two variants may be clearly distinct from one another, their speech communities are not. Amongst proficient speakers, there is a high level of mutual intelligibility. Furthermore, the social realities of increased contact between speakers of SEA (traditionally found in the Republic of Armenia, Iran and countries of the post-Soviet zone) and speakers of SWA (traditionally found in post-Ottoman diasporan communities founded in the Middle East, Europe and the Americas) manifest in multivariant households, and sometimes multivariant speakers.

An increasing presence of SEA speakers in traditionally SWA-speaking diasporan communities, and an increasing presence of SWA in the Republic of Armenia (a traditionally SEA-speaking zone) pose more of a technical problem than a social one. While speakers frequently overcome these barriers, it would be very challenging for a single-variant ASR system to generate automatic subtitles for a video of a SEA-speaking journalist and a SWA-speaking interviewee, or a discussion between a SWA-speaking educator and a SEA-speaking student. If single-variant ASR were employed for the purposes of home-assistant technologies, a device would risk understanding one spouse in a multivariant household, and not the other.
Armenian’s orthography (in both variants) is largely phonemic (Vaux, 1998), and maintains a representation of three graphemes for each of the plosive/affricate voicing sequences, making rule-based speech synthesis of either pronunciation feasible from the same text. However, producing text from speech input poses a challenge when some acoustically identical inputs correspond to the same grapheme, while other sets of identical input are to be recognised as different graphemes.

Armenian can be described as a pluricentric language (Cowé, 1992; Muhr, 2016). We can draw inspiration from attempts that have been made to construct ASR systems for other pluricentric languages. Many attempts rely at their core on a Grapheme to Phoneme approach (G2P) (Bisani and Ney, 2008). For example for Spanish, Caballero et al. (2009) define a “...multidialectal phone set [which] leads to a full dialect-independent recognizer.” Another approach builds off of the process of discriminating between similar languages (DSL) (Zampieri et al., 2017) in creating a mechanism to determine which variant of a multivariant language is being spoken, such as the case of Arabic (Ali, 2018). Attempts at solving this issue for Armenian will rely upon a combination of these two approaches, due to the complication of Armenian’s phone sets including an inversion and a merger.

Recent literature acknowledges a slight performance gap, with end-to-end (E2E) ASR systems slightly under-performing when compared to hybrid ASR models¹, but also, that recent innovations are closing that gap (Perero-Codosero et al., 2022). We will present our preliminary study of the main phonemic considerations which are a challenge for an ASR system to address the SEA:SWA variation issue. Our work to construct an ASR model for Armenian is conducted in the framework of the DALiH project, within which we expect to take advantage of the two major transcribed audio corpora, described in Section 3. Those will be used to implement E2E and hybrid models which, in turn, will be used in comparative/contrastive studies to have a more informed view of how SEA:SWA variations can be efficiently taken into account by a unified ASR system.

2. The State of Armenian ASR

The budding presence of ASR technologies for Armenian is underway, however there often exist many roadblocks in terms of access of information, material and data for the scientific and research communities. We can group the attempts to approach Armenian ASR into two categories: (1) multilingual approaches which include Armenian, and (2) Armenian-specific approaches.

2.1. Multilingual Models

In the case of (1) one can site companies who create models adapted to multiple languages. For example, Happy Scribe², a company based in Barcelona, Spain, proposes an automatic transcription and automatic subtitling service for 63 languages, including Armenian. Another such example is VocalMatic³, based in Toronto, Canada. Similarly to Happy Scribe, VocalMatic boasts speech-to-text models for more than 100 languages (including Armenian). Lastly, amongst the three corporations often credited with bringing ASR technology into private homes via personal assistants (Google, Amazon, and Apple), only Google has a voice recognition option for Armenian at present⁴. In none of the aforementioned instances is the variant of Armenian specified, but when this is the case, the underlying assumption is that “Armenian” refers only to SEA. Otherwise, the variant or dialect would be specified⁵.

2.2. Armenian-specific Models

In regards to case (2), Armenian-specific approaches date back at least to 2016, such as the system of Vardanyan (2016), an ASR system constructed based on tools from the open-source CMUSphinx project⁶. Another important Armenian-specific project is that of the National Center of Communication and Artificial Intelligence Technologies (NCCAIT⁷), which builds its corpus progressively through audio submissions provided by volunteers who read pre-selected texts. These two projects work on SEA primarily, but recently, the NCCAIT introduced a new analogous, but seemingly separate project⁸ which operates in a similar manner for SWA.

Both the multilingual approaches and Armenian-specific approaches are promising in that they show evidence of the advancement of the technology, however the multilingual approaches are all explicitly private, and it remains unclear whether the NCCAIT resources will ultimately be open-source. The broader scientific community therefore lacks access to their information.

¹ Especially in languages other than English.

² https://www.happyscribe.com/transcribe-armenian
³ https://vocalmatic.com/languages/transcribe-armenian-armenian-to-text
⁴ Google Translation has speech-to-text capacities for Armenian, indicated by the microphone button in the input box https://translate.google.com/?hl=fr&sl=hy&tl=en&op=translate
⁵ For example, Vardanyan (2016) wrote an entire master’s thesis on the creation of an “Armenian” ASR system, in which the variant is never specified, all of the data and analyses pertain exclusively to SEA
⁶ https://cmusphinx.github.io
⁷ http://3.144.127.191/mt/
⁸ https://aws.ican24.net/hywrec/index.php
training corpora, and above all, the methodologies behind the creation of their systems. Furthermore, none of the programmes mentioned above have the explicit objective of functioning on a bi-variant basis; they either ignore this complication (by referring only to “Armenian”, understood to mean SEA) or in the case of NCCAIT, they isolate the variants from each other in constructing separate models.

3. Resources

While Armenian has traditionally been considered an under-resourced language when compared to languages of wider-spread speakerships, the language benefits from a developed literary history and extensive textual corpora. In recent years, significant advances have been made in the digitisation of Armenian texts, and the compilation of oral corpora as well. Any further research into the development and refining of Armenian ASR technologies will depend on bare audio data for processing, as well as transcribed and aligned audio data for verification and training. Our research within the DALiH framework will benefit from two major available oral corpora, one of each of the standard variants.

3.1. Available Speech Corpora

3.1.1. Western Armenian

A major source of audio data for standard Western Armenian is the Rerooted archive, an archive of interviews carried out starting in 2017 with Western Armenian speakers from Syria, who relocated to the Republic of Armenia as a result of the war in their birth country. Each interview generally last between 45 minutes and 1.5 hours, in which an interviewer poses question (often in Western Armenian, but sometimes in English) and the interviewee responds at length in Western Armenian. The vast majority of the audio documents available are not only transcribed in SWA, but also translated into English, as the project’s primary goal concerns the transmission of memory of a displaced community. The full length interviews are available through the Rerooted website and housed on YouTube, where the transcriptions and translations serve as subtitles (and are therefore aligned by phrase). These aligned transcriptions were produced using the online subtitling platform Amara, from where we have been granted access to the aligned transcriptions in SRT (standard subtitling) format. In the framework of the DALiH project, we aim to make these resources publicly available as well. In total the exploitable aligned audio data from the Rerooted archive amounts to 90 documents, or 81 hours and forty minutes.

3.1.2. Eastern Armenian

A primordial source of Eastern Armenian audio data is the Eastern Armenian National Corpus (Khurshudian and Daniel, 2009)\(^\text{11}\) (EANC), an online written and speech corpus compiled by an international team of linguists, scholars and software professionals, in the framework of an eponymous project launched in 2006. Amongst EANC’s collected and processed materials are audio data of diverse genres: spontaneous speech, public discourse, online communications and task-oriented discourse. All together the aforementioned materials amount to 774 transcribed audio documents, or 3.5 million tokens.\(^\text{12}\)

Rerooted and EANC both provide a healthy base of semi-processed audio data, originating from speakers of diverse ages and backgrounds, upon which further research and testing of ASR models will depend.

3.2. Data Preprocessing

None of the two corpora described in this section were built to train an ASR model. The use of such resources therefore requires preprocessing.

As mentioned in the previous section, most of Rerooted videos already have subtitles in Armenian. No further data processing is needed other than a trivial format conversion, from SRT to TextGrid\(^\text{13}\). Such conversion is useful as we are using Praat (Boersma and Weenink, 2022) to visualise the data and running Praat scripts to study variant-related phenomena.

On the other hand, transcriptions for EANC have to be aligned to be used. Considering the amount of data to be processed, we developed a simple automatic processing chain:

1. Extraction of the transcription from Word files
2. Automatic segmentation into utterances, units that are broadly equivalent to sentences in written texts
3. Forced alignment of those units with the sound

Extraction of the transcription While subtitles only transcribe what was pronounced by speakers, transcriptions meant to be analysed by linguists also contain extralinguistic information such as the speaker’s attitude,

\(^{9}\)https://www.rerooted.org
\(^{10}\)https://amara.org/fr/

\(^{11}\)http://www.eanc.net
\(^{12}\)Unfortunately we cannot report the quantity of data in hours, because that information is unavailable to us.
\(^{13}\)The conversion was successfully tested on a sample using a slightly modified version of the script available on https://github.com/tanmaysurana/srt2textgrid.
laughs, pauses or overlapping sequences, as shown in Figure 1. In this example, we can see that the annotator explicitly indicated that the two speakers were "talking at the same time", using a specific marker, #, to signal that this is not a transcription but an annotation. The first step of our processing chain consists of removing this extralinguistic information along with the speaker’s identification which can be either their name, their status (որպես doctor, Աշխատույթ employee etc.) or an identification code (S1/S2, ա1/ա2 etc.).

Figure 1: Excerpt of the transcription of a dialogue from EANC [dialogue_in_the_shop1]

translation:
K1@ Well yeah / I said hold / ... what's the use. // ... Every year it blossoms / ... and that kind of cold in the house / and we remain without fruit. #TALKING AT THE SAME TIME# K2@ don't let these apricots spoil. // #TALKING AT THE SAME TIME# the apricot trees are very pretty/... like a bride would be.

Automatic segmentation Text segmentation is necessary for alignment. Speech data typically does not have punctuation and automatic speech segmentation may therefore rely on prosodic cues (such as lengthening of vowels or contours) or the length of pauses between words. However, EANC’s transcription guidelines seem to include punctuation marks as well as segmentation marks in some cases such as in Figure 1 where / and // seem to be used to segment the utterances into smaller units. The second step of our processing chain made use of punctuation marks (namely, the comma and the ;// (verjaket) used as a full stop) and :// in dialogues15.

Forced alignment Aligning orthographic transcriptions with their corresponding speech is a costly task in terms of time. For the last part of our processing chain, we use a well-documented Python package for forced alignment called aeneas (Pettarin, 2022)16. This decision was mainly led by the fact that it wraps eSpeak17, an open-source speech synthesizer, allowing support for both standards of Armenian. Even if this support has been implemented naively with no feedback neither from Eastern nor Western Armenian native speakers yet, preliminary results are quite good for high quality recordings.

The alignment was manually evaluated by a native speaker on a small sample of different types of speech from EANC:

- monologues including TV speech recordings and interviews in which the interviewer only asks a question at the very beginning of the recordings;
- dialogues : conversations with two participants (on the phone, at the office, when shopping etc.);
- polylogues : conversations with more than two participants, such as friends having a meal together.

It is noteworthy that there is a discrepancy in the quality of those samples, some being recorded in a quiet room, while others were recorded in the street where cars or construction work can be heard in the background. Unsurprisingly, the results are unequal: very good on monologues (especially for the interviews) but quite bad on polylogues, especially with noise in the background and/or when speakers’ speech overlaps frequently. While the use of our aligner is promising on monologues, we now have to do a formal evaluation to assess whether or not providing our annotators with automatically aligned recordings of polylogues will help them or if segmenting from scratch takes less time than the manual correction of segments’ boundaries.

4. A Unified System

As explained in Section 2, while advances in Armenian ASR are well underway, there remain large issues in terms of availability to the academic community. Additionally, none of the existing projects propose a model which addresses the community’s need for a unified, or bi-variant system. In order to proceed forward in this research, and keeping in mind the limitations of resources, we propose that a hybrid method is more appropriate in the immediate future than an End-to-end (E2E) ASR system. In following other recent approaches to automatic transcription for lesser-endowed languages (such as (Guillaume et al., 2022)), we suggest that a hybrid system would enable us to employ neuronal systems such as wav2vec for feature extraction, informing our acoustic model, which we would fine-tune manually. We would then pass to a sole traditional lexicon model, and finally to a language model.

In employing this strategy, the pre-processing (i.e. alignment) and processing of audio data becomes all the more crucial in order to train our model, and also to measure it’s efficacy and accuracy.
5. Conclusion

We have outlined the major challenges in the development of Armenian ASR, especially as it pertains to a system which would understand both of the language’s standard variants. Despite major advancements in Armenian ASR, this central issue remains largely unaddressed. We present the available oral corpora, and with the data available to us we ran a preliminary forced-alignment test, which showed varying results, confirming the need for the development of tools and resources. Lastly we proposed a basic methodology for moving forward.

6. Acknowledgements

DALiH (Digitizing Armenian Linguistic Heritage) is a project funded by the ANR, the French National Research Agency (ANR-21-CE38-0006).

7. Bibliographical References

Muhr, R. (2016). The state of the art of research on pluricentric languages: Where we were and where we are now. *Pluricentric Languages and Non-Dominant Varieties Worldwide, Österreichisches deutsch sprache der gegenwart*, 18:13–40.

42
Author Index

Arkhangelskiy, Timofey, 28
Avetisyan, Karen, 8
Chakmakjian, Samuel, 38
Daniel, Misha, 28
Dolatian, Hossep, 1
Kepeklian, Gabriel, 13
Khurshudyan, Victoria, 28
Kindt, Bastien, 13, 21
Levonian, Dmitri, 28
Plungian, Vladimir, 28
Polyakov, Alex, 28
Rubakov, Sergei, 28
Swanson, Daniel, 1
Van Elverdinghe, Emmanuel, 21
Wang, Ilaine, 38
Washington, Jonathan, 1