@inproceedings{daems-hackenbuchner-2022-debiasbyus,
title = "{D}e{B}ias{B}y{U}s: Raising Awareness and Creating a Database of {MT} Bias",
author = "Daems, Joke and
Hackenbuchner, Jani{\c{c}}a",
booktitle = "Proceedings of the 23rd Annual Conference of the European Association for Machine Translation",
month = jun,
year = "2022",
address = "Ghent, Belgium",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2022.eamt-1.34",
pages = "289--290",
abstract = "This paper presents the project initiated by the BiasByUs team resulting from the 2021 Artificially Correct Hackaton. We briefly explain our winning participation in the hackaton, tackling the challenge on {`}Database and detection of gender bi-as in A.I. translations{'}, we highlight the importance of gender bias in Machine Translation (MT), and describe our pro-posed solution to the challenge, the cur-rent status of the project, and our envi-sioned future collaborations and re-search.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="daems-hackenbuchner-2022-debiasbyus">
<titleInfo>
<title>DeBiasByUs: Raising Awareness and Creating a Database of MT Bias</title>
</titleInfo>
<name type="personal">
<namePart type="given">Joke</namePart>
<namePart type="family">Daems</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Janiça</namePart>
<namePart type="family">Hackenbuchner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Annual Conference of the European Association for Machine Translation</title>
</titleInfo>
<originInfo>
<publisher>European Association for Machine Translation</publisher>
<place>
<placeTerm type="text">Ghent, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the project initiated by the BiasByUs team resulting from the 2021 Artificially Correct Hackaton. We briefly explain our winning participation in the hackaton, tackling the challenge on ‘Database and detection of gender bi-as in A.I. translations’, we highlight the importance of gender bias in Machine Translation (MT), and describe our pro-posed solution to the challenge, the cur-rent status of the project, and our envi-sioned future collaborations and re-search.</abstract>
<identifier type="citekey">daems-hackenbuchner-2022-debiasbyus</identifier>
<location>
<url>https://aclanthology.org/2022.eamt-1.34</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>289</start>
<end>290</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DeBiasByUs: Raising Awareness and Creating a Database of MT Bias
%A Daems, Joke
%A Hackenbuchner, Janiça
%S Proceedings of the 23rd Annual Conference of the European Association for Machine Translation
%D 2022
%8 June
%I European Association for Machine Translation
%C Ghent, Belgium
%F daems-hackenbuchner-2022-debiasbyus
%X This paper presents the project initiated by the BiasByUs team resulting from the 2021 Artificially Correct Hackaton. We briefly explain our winning participation in the hackaton, tackling the challenge on ‘Database and detection of gender bi-as in A.I. translations’, we highlight the importance of gender bias in Machine Translation (MT), and describe our pro-posed solution to the challenge, the cur-rent status of the project, and our envi-sioned future collaborations and re-search.
%U https://aclanthology.org/2022.eamt-1.34
%P 289-290
Markdown (Informal)
[DeBiasByUs: Raising Awareness and Creating a Database of MT Bias](https://aclanthology.org/2022.eamt-1.34) (Daems & Hackenbuchner, EAMT 2022)
ACL