@inproceedings{martins-etal-2022-deepspin,
title = "{D}eep{SPIN}: Deep Structured Prediction for Natural Language Processing",
author = "Martins, Andr{\'e} F. T. and
Peters, Ben and
Zerva, Chrysoula and
Lyu, Chunchuan and
Correia, Gon{\c{c}}alo and
Treviso, Marcos and
Martins, Pedro and
Mihaylova, Tsvetomila",
booktitle = "Proceedings of the 23rd Annual Conference of the European Association for Machine Translation",
month = jun,
year = "2022",
address = "Ghent, Belgium",
publisher = "European Association for Machine Translation",
url = "https://aclanthology.org/2022.eamt-1.53",
pages = "327--328",
abstract = "DeepSPIN is a research project funded by the European Research Council (ERC) whose goal is to develop new neural structured prediction methods, models, and algorithms for improving the quality, interpretability, and data-efficiency of natural language processing (NLP) systems, with special emphasis on machine translation and quality estimation. We describe in this paper the latest findings from this project.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="martins-etal-2022-deepspin">
<titleInfo>
<title>DeepSPIN: Deep Structured Prediction for Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="given">F</namePart>
<namePart type="given">T</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ben</namePart>
<namePart type="family">Peters</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chrysoula</namePart>
<namePart type="family">Zerva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chunchuan</namePart>
<namePart type="family">Lyu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gonçalo</namePart>
<namePart type="family">Correia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Treviso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pedro</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tsvetomila</namePart>
<namePart type="family">Mihaylova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 23rd Annual Conference of the European Association for Machine Translation</title>
</titleInfo>
<originInfo>
<publisher>European Association for Machine Translation</publisher>
<place>
<placeTerm type="text">Ghent, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>DeepSPIN is a research project funded by the European Research Council (ERC) whose goal is to develop new neural structured prediction methods, models, and algorithms for improving the quality, interpretability, and data-efficiency of natural language processing (NLP) systems, with special emphasis on machine translation and quality estimation. We describe in this paper the latest findings from this project.</abstract>
<identifier type="citekey">martins-etal-2022-deepspin</identifier>
<location>
<url>https://aclanthology.org/2022.eamt-1.53</url>
</location>
<part>
<date>2022-06</date>
<extent unit="page">
<start>327</start>
<end>328</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DeepSPIN: Deep Structured Prediction for Natural Language Processing
%A Martins, André F. T.
%A Peters, Ben
%A Zerva, Chrysoula
%A Lyu, Chunchuan
%A Correia, Gonçalo
%A Treviso, Marcos
%A Martins, Pedro
%A Mihaylova, Tsvetomila
%S Proceedings of the 23rd Annual Conference of the European Association for Machine Translation
%D 2022
%8 June
%I European Association for Machine Translation
%C Ghent, Belgium
%F martins-etal-2022-deepspin
%X DeepSPIN is a research project funded by the European Research Council (ERC) whose goal is to develop new neural structured prediction methods, models, and algorithms for improving the quality, interpretability, and data-efficiency of natural language processing (NLP) systems, with special emphasis on machine translation and quality estimation. We describe in this paper the latest findings from this project.
%U https://aclanthology.org/2022.eamt-1.53
%P 327-328
Markdown (Informal)
[DeepSPIN: Deep Structured Prediction for Natural Language Processing](https://aclanthology.org/2022.eamt-1.53) (Martins et al., EAMT 2022)
ACL
- André F. T. Martins, Ben Peters, Chrysoula Zerva, Chunchuan Lyu, Gonçalo Correia, Marcos Treviso, Pedro Martins, and Tsvetomila Mihaylova. 2022. DeepSPIN: Deep Structured Prediction for Natural Language Processing. In Proceedings of the 23rd Annual Conference of the European Association for Machine Translation, pages 327–328, Ghent, Belgium. European Association for Machine Translation.