@inproceedings{kondadadi-etal-2022-data,
title = "Data Quality Estimation Framework for Faster Tax Code Classification",
author = "Kondadadi, Ravi and
Williams, Allen and
Nicolov, Nicolas",
editor = "Malmasi, Shervin and
Rokhlenko, Oleg and
Ueffing, Nicola and
Guy, Ido and
Agichtein, Eugene and
Kallumadi, Surya",
booktitle = "Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.ecnlp-1.4",
doi = "10.18653/v1/2022.ecnlp-1.4",
pages = "29--34",
abstract = "This paper describes a novel framework to estimate the data quality of a collection of product descriptions to identify required relevant information for accurate product listing classification for tax-code assignment. Our Data Quality Estimation (DQE) framework consists of a Question Answering (QA) based attribute value extraction model to identify missing attributes and a classification model to identify bad quality records. We show that our framework can accurately predict the quality of product descriptions. In addition to identifying low-quality product listings, our framework can also generate a detailed report at a category level showing missing product information resulting in a better customer experience.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kondadadi-etal-2022-data">
<titleInfo>
<title>Data Quality Estimation Framework for Faster Tax Code Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ravi</namePart>
<namePart type="family">Kondadadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Allen</namePart>
<namePart type="family">Williams</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicolas</namePart>
<namePart type="family">Nicolov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shervin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oleg</namePart>
<namePart type="family">Rokhlenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicola</namePart>
<namePart type="family">Ueffing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ido</namePart>
<namePart type="family">Guy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eugene</namePart>
<namePart type="family">Agichtein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Surya</namePart>
<namePart type="family">Kallumadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes a novel framework to estimate the data quality of a collection of product descriptions to identify required relevant information for accurate product listing classification for tax-code assignment. Our Data Quality Estimation (DQE) framework consists of a Question Answering (QA) based attribute value extraction model to identify missing attributes and a classification model to identify bad quality records. We show that our framework can accurately predict the quality of product descriptions. In addition to identifying low-quality product listings, our framework can also generate a detailed report at a category level showing missing product information resulting in a better customer experience.</abstract>
<identifier type="citekey">kondadadi-etal-2022-data</identifier>
<identifier type="doi">10.18653/v1/2022.ecnlp-1.4</identifier>
<location>
<url>https://aclanthology.org/2022.ecnlp-1.4</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>29</start>
<end>34</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Data Quality Estimation Framework for Faster Tax Code Classification
%A Kondadadi, Ravi
%A Williams, Allen
%A Nicolov, Nicolas
%Y Malmasi, Shervin
%Y Rokhlenko, Oleg
%Y Ueffing, Nicola
%Y Guy, Ido
%Y Agichtein, Eugene
%Y Kallumadi, Surya
%S Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F kondadadi-etal-2022-data
%X This paper describes a novel framework to estimate the data quality of a collection of product descriptions to identify required relevant information for accurate product listing classification for tax-code assignment. Our Data Quality Estimation (DQE) framework consists of a Question Answering (QA) based attribute value extraction model to identify missing attributes and a classification model to identify bad quality records. We show that our framework can accurately predict the quality of product descriptions. In addition to identifying low-quality product listings, our framework can also generate a detailed report at a category level showing missing product information resulting in a better customer experience.
%R 10.18653/v1/2022.ecnlp-1.4
%U https://aclanthology.org/2022.ecnlp-1.4
%U https://doi.org/10.18653/v1/2022.ecnlp-1.4
%P 29-34
Markdown (Informal)
[Data Quality Estimation Framework for Faster Tax Code Classification](https://aclanthology.org/2022.ecnlp-1.4) (Kondadadi et al., ECNLP 2022)
ACL