@inproceedings{jain-etal-2022-comparative,
title = "Comparative Snippet Generation",
author = "Jain, Saurabh and
Miao, Yisong and
Kan, Min-Yen",
editor = "Malmasi, Shervin and
Rokhlenko, Oleg and
Ueffing, Nicola and
Guy, Ido and
Agichtein, Eugene and
Kallumadi, Surya",
booktitle = "Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.ecnlp-1.7",
doi = "10.18653/v1/2022.ecnlp-1.7",
pages = "49--57",
abstract = "We model products{'} reviews to generate comparative responses consisting of positive and negative experiences regarding the product. Specifically, we generate a single-sentence, comparative response from a given positive and a negative opinion. We contribute the first dataset for this task of Comparative Snippet Generation from contrasting opinions regarding a product, and an analysis of performance of a pre-trained BERT model to generate such snippets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jain-etal-2022-comparative">
<titleInfo>
<title>Comparative Snippet Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Saurabh</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yisong</namePart>
<namePart type="family">Miao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shervin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oleg</namePart>
<namePart type="family">Rokhlenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicola</namePart>
<namePart type="family">Ueffing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ido</namePart>
<namePart type="family">Guy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eugene</namePart>
<namePart type="family">Agichtein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Surya</namePart>
<namePart type="family">Kallumadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We model products’ reviews to generate comparative responses consisting of positive and negative experiences regarding the product. Specifically, we generate a single-sentence, comparative response from a given positive and a negative opinion. We contribute the first dataset for this task of Comparative Snippet Generation from contrasting opinions regarding a product, and an analysis of performance of a pre-trained BERT model to generate such snippets.</abstract>
<identifier type="citekey">jain-etal-2022-comparative</identifier>
<identifier type="doi">10.18653/v1/2022.ecnlp-1.7</identifier>
<location>
<url>https://aclanthology.org/2022.ecnlp-1.7</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>49</start>
<end>57</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Comparative Snippet Generation
%A Jain, Saurabh
%A Miao, Yisong
%A Kan, Min-Yen
%Y Malmasi, Shervin
%Y Rokhlenko, Oleg
%Y Ueffing, Nicola
%Y Guy, Ido
%Y Agichtein, Eugene
%Y Kallumadi, Surya
%S Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F jain-etal-2022-comparative
%X We model products’ reviews to generate comparative responses consisting of positive and negative experiences regarding the product. Specifically, we generate a single-sentence, comparative response from a given positive and a negative opinion. We contribute the first dataset for this task of Comparative Snippet Generation from contrasting opinions regarding a product, and an analysis of performance of a pre-trained BERT model to generate such snippets.
%R 10.18653/v1/2022.ecnlp-1.7
%U https://aclanthology.org/2022.ecnlp-1.7
%U https://doi.org/10.18653/v1/2022.ecnlp-1.7
%P 49-57
Markdown (Informal)
[Comparative Snippet Generation](https://aclanthology.org/2022.ecnlp-1.7) (Jain et al., ECNLP 2022)
ACL
- Saurabh Jain, Yisong Miao, and Min-Yen Kan. 2022. Comparative Snippet Generation. In Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 49–57, Dublin, Ireland. Association for Computational Linguistics.