@inproceedings{shido-etal-2022-textual,
title = "Textual Content Moderation in {C}2{C} Marketplace",
author = "Shido, Yusuke and
Liu, Hsien-Chi and
Umezawa, Keisuke",
editor = "Malmasi, Shervin and
Rokhlenko, Oleg and
Ueffing, Nicola and
Guy, Ido and
Agichtein, Eugene and
Kallumadi, Surya",
booktitle = "Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.ecnlp-1.8",
doi = "10.18653/v1/2022.ecnlp-1.8",
pages = "58--62",
abstract = "Automatic monitoring systems for inappropriate user-generated messages have been found to be effective in reducing human operation costs in Consumer to Consumer (C2C) marketplace services, in which customers send messages directly to other customers. We propose a lightweight neural network that takes a conversation as input, which we deployed to a production service. Our results show that the system reduced the human operation costs to less than one-sixth compared to the conventional rule-based monitoring at Mercari.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shido-etal-2022-textual">
<titleInfo>
<title>Textual Content Moderation in C2C Marketplace</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yusuke</namePart>
<namePart type="family">Shido</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsien-Chi</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keisuke</namePart>
<namePart type="family">Umezawa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shervin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oleg</namePart>
<namePart type="family">Rokhlenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicola</namePart>
<namePart type="family">Ueffing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ido</namePart>
<namePart type="family">Guy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eugene</namePart>
<namePart type="family">Agichtein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Surya</namePart>
<namePart type="family">Kallumadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automatic monitoring systems for inappropriate user-generated messages have been found to be effective in reducing human operation costs in Consumer to Consumer (C2C) marketplace services, in which customers send messages directly to other customers. We propose a lightweight neural network that takes a conversation as input, which we deployed to a production service. Our results show that the system reduced the human operation costs to less than one-sixth compared to the conventional rule-based monitoring at Mercari.</abstract>
<identifier type="citekey">shido-etal-2022-textual</identifier>
<identifier type="doi">10.18653/v1/2022.ecnlp-1.8</identifier>
<location>
<url>https://aclanthology.org/2022.ecnlp-1.8</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>58</start>
<end>62</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Textual Content Moderation in C2C Marketplace
%A Shido, Yusuke
%A Liu, Hsien-Chi
%A Umezawa, Keisuke
%Y Malmasi, Shervin
%Y Rokhlenko, Oleg
%Y Ueffing, Nicola
%Y Guy, Ido
%Y Agichtein, Eugene
%Y Kallumadi, Surya
%S Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F shido-etal-2022-textual
%X Automatic monitoring systems for inappropriate user-generated messages have been found to be effective in reducing human operation costs in Consumer to Consumer (C2C) marketplace services, in which customers send messages directly to other customers. We propose a lightweight neural network that takes a conversation as input, which we deployed to a production service. Our results show that the system reduced the human operation costs to less than one-sixth compared to the conventional rule-based monitoring at Mercari.
%R 10.18653/v1/2022.ecnlp-1.8
%U https://aclanthology.org/2022.ecnlp-1.8
%U https://doi.org/10.18653/v1/2022.ecnlp-1.8
%P 58-62
Markdown (Informal)
[Textual Content Moderation in C2C Marketplace](https://aclanthology.org/2022.ecnlp-1.8) (Shido et al., ECNLP 2022)
ACL
- Yusuke Shido, Hsien-Chi Liu, and Keisuke Umezawa. 2022. Textual Content Moderation in C2C Marketplace. In Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5), pages 58–62, Dublin, Ireland. Association for Computational Linguistics.