
Proceedings of the The 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 224 - 231
December 7-11, 2022 c©2022 Association for Computational Linguistics

MIC: A Multi-task Interactive Curation Tool

Shi Yu1∗∗, Mingfeng Yang2, Jerrod Parker3, and Stephen Brock2

1Broadridge Financial Solutions, shi.yu@broadridge.com
2Vanguard Group, {mingfeng yang, stephen brock}@vanguard.com

3Thomson Reuters, jerrodparker20@gmail.com

Abstract

This paper introduces MIC, a Multi-task
Interactive Curation tool, a human-machine
collaborative curation tool for multiple NLP
tasks. The tool aims to borrow recent advances
in literature to solve pain-points in real NLP
tasks. Firstly, it supports multiple projects
with multiple users which enables collabora-
tive annotations. Secondly, MIC allows easy
integration of pre-trained models, rules, and
dictionaries to auto label the text and speed
up the labeling process. Thirdly, MIC sup-
ports annotation at different scales (span of
characters and words, tokens and lines, or doc-
ument) and different types (free text, sentence
labels, entity labels, and relationship triplets)
with easy GUI operations.

1 Introduction

With the recent advances in many frontiers, high-
quality annotations are essential to the success of
NLP applications. Numerous organizations have
accumulated vast amounts of unlabeled text data
that they want to utilize in NLP applications. How-
ever, for many of these tasks (text summariza-
tion, relation extraction, named-entity recognition),
aquiring labels can be very costly and susceptible
to error. Furthermore, domain adaptation (Han and
Eisenstein, 2019), which is the common approach
of fine-tuning gigantic domain agnostic NLP mod-
els on a small amount of domain-specific labeled
data, commonly has difficulty on new emerging /
specific domains that lack similar labeled datasets
and still requires annotations from scratch. Mean-
while, adoption of accelerated ML solutions have
shown to reduce the workload and budget required
for manual labeling. Example techniques include
active learning, weak supervision, data augmen-
tation, and many others. To concur the time-
consuming, labor-intensive, and expensive annota-
tion challenges, recent trends in annotation tool de-

∗All authors contributed equally

velopment (Lin et al., 2019; Lee et al., 2020) focus
on cost-effective and human-machine collaborative
mechanisms, which leverage the processing power
of state-of-the-art models pre-trained on large cor-
pora and high-accuracy human intelligence on rare
ambiguous incidents.

Please visit www.textmic.com using username
ds and password demouser123 to visit the demo
system. A screencast video is at https://youtu.be/

pHxt5k_mLvw. The github repo of MIC is at https:

//github.com/cyberyu/textmic.

2 Related Work

In the past decade, there were about 30 popular
annotation tools published. Among them, there
are well-known tools like BRAT (Stenetorp et al.,
2012), which supports a wide variety of NLP tasks,
including entity recognition, event extraction, and
POS (part-of-speech) tagging. GATE Teamware
(Bontcheva et al., 2013) is both a desktop applica-
tion and a web tool that focuses on user manage-
ment and supports multi-user roles. Yedda (Yang
et al., 2018) is a recent tool built on Python that
offers auto-labeling via machine learning and pro-
vides both command line and web-based interfaces.
SANTO (Hartung et al., 2018), which is designed
primarily for slot-filling tasks, enables the forma-
tion of relational structures from an ontology. It
also visualizes the annotations of every user at once
to help project owners monitor the quality of an-
notations. TALEN (Mayhew and Roth, 2018) spe-
cialises in the annotation of rare entities. EasyTree
(Tratz and Phan, 2018) is specifically designed for
the annotation of dependency trees and is integrated
with the Amazon Mechanical Turk crowdsourcing
platform. AlpacaTag (Lin et al., 2019) and LEAN-
LIFE (Lee et al., 2020) leverage machine learning
models, active learning, and weak supervision, re-
spectively, to provide annotation recommendations
to reduce annotation costs.

The annotation visualization design of our tool

224

https://youtu.be/pHxt5k_mLvw
https://youtu.be/pHxt5k_mLvw
https://github.com/cyberyu/textmic
https://github.com/cyberyu/textmic


System Annotation
Type

Adjud
-ication

Intelligent Interactive
Annotation

External
Dependencies

Programming
Language

MIC Classify, Link Yes pre-trained models, crowd
-sourcing weak-supervision

MongoDB, PostgreSQL Python,Django,Vue.js

RedCoat (Stewart et al., 2019) Classify, Link Yes hierarchical entities MongoDB Javascript, Python
SANTO (Hartung et al., 2018) Link - ontology-driven Apache,MySQL PHP
TALEN (Mayhew and Roth, 2018) Classify Yes entity propagation, internet search - Unknown
EasyTree (Tratz and Phan, 2018) Classify,Link Yes crowd-sourcing Amazon Turk Java Servlet, Javascript
AlpacaTag (Lin et al., 2019) Classify Yes recommendation, crowd-sourcing - Python, Django
LEAN-LIFE (Lee et al., 2020) Classify, Link Yes crowd-sourcing, weak-supervision - Python
SLATE (Kummerfeld, 2019) Classify, Link Yes terminal-based annotation - Python
BRAT (Stenetorp et al., 2012) Classify, Link Yes - Apache Python,Javascript
GATE (Bontcheva et al., 2013) Classify, Link Yes - - Java
YEDDA (Yang et al., 2018) Classify Yes - - Python
WAT-SL (Kiesel et al., 2017) Classify Yes - Apache Java
SAWT (Samih et al., 2016) Classify - - - Python, PHP
GraphAnno (Gast et al., 2015) Classify, Link - - - Ruby
CorA (Bollmann et al., 2014) Classify - - - PHP,Javascript
WebAnno (Yimam et al., 2013) Classify, Link - - - Java
Anafora (Chen and Styler, 2013) Classify, Link Yes - - Python
ANALEC (Landragin et al., 2012) Classify, Link - - Java
LabelStudio labelstud.io Classify, Link Yes text, images, video, audio Commercial React, MST, Python
Prodigy https://prodi.gy/ Classify, Link Yes active learning in annotation Commercial Python
Tagtog tagtog.com Classify, Link Yes support annotations in PDF Commercial Java, Python
LightTag lighttag.io Classify, Link Yes support inter-annotator, project management Commercial Python

Table 1: A comparison of annotation tools released recently. MIC supports classification (sentence, NER) and link
prediction (relationship); Adjudication: MIC encourages human-machine collaborative annotation; thus, human
annotators can correct mistaken machine-generated labels. Relying on role configuration, experienced reviewers
can also correct/reject any individual human annotator’s labeling results, or even reject the entire annotation results
from a specific annotator and ask for re-annotation.

is inspired by RedCoat (Stewart et al., 2019), a
web-based annotation tool that supports the stack-
ing and inheritance of hierarchical entities using
flexible Javascript visualization. We applied the
same visual design style in MIC using Vue.js to
display a large number of stacked annotations from
different human curators, hand written rules, and
models. Besides sharing many common features,
the proposed annotation tool has some unique char-
acteristics and strengths compared to all existing
tools. We summarize and compare the main char-
acteristics of MIC with other tools, including some
commercial products, in Table 1. Recent advances
in annotation tool development focus more on in-
telligent capabilities such as auto-annotation, rec-
ommendation, crowd-sourcing, weak-supervision,
and many other STOA aspects.

3 System Description and Key Features

Rather than specifying a task such as named en-
tity recognition or sentence labeling, MIC is de-
signed to flexibly support any annotations that can
be formulated as one of three annotation types:
sentence-level labeling, word/phrase-level labeling,
or entity-relation-entity triplet labeling. These can
be applied to items that are single documents, lines,
phrases, tokens, or token combinations. Further-
more, MIC is able to manage annotation tasks asso-
ciated with interactions among various annotation
types. For example, one can restrict the annotation
task on named entities among sentences having
positive sentiment score, or limit the findings of re-

lationship triplets that contain the entity Olympics
with the entity type as event.

One major novelty of MIC is its support of
human-machine interactive annotation via a flex-
ible user interface. For each annotation task, the
human annotator can be empowered by a set of pre-
trained ML models to quickly generate machine-
annotated labels. These pre-trained models are
either built-in models from popular data science
packages or novel open-source implementations
from Github. Pre-trained models can be configured
by administrators via the MIC backend interface
and each annotation project can associate with mul-
tiple models. Pre-trained models are grouped in
three categories: sentence labeling, NER labeling
and relationship labeling. All pre-trained models
are hosted as RESTFUL API endpoints, and for
each annotation category the input/output parame-
ters of all endpoints are required to follow the same
standards so various models can be interchanged
easily. Though machine generated labels cannot
be directly considered as ground-truth annotations,
the advantages here are two fold. First, instead of
requiring the annotator to write everything from
scratch, they start from the most likely machine-
generated outputs, and MIC supports quick and
intuitive editing operations. This helps the human
annotator to spend effort effectively and focus on
correcting difficult examples. Second, if the hu-
man annotator load and apply multiple machine-
generated outputs on the same text, those machine
outputs can be exported as noisy labels to train a

225

labelstud.io
https://prodi.gy/
tagtog.com
lighttag.io


consensus model using weak supervision.
Finally, MIC has been designed to manage an-

notation tasks for multiple projects and multiple
users. Multi-project setting allows MIC to be
configured flexibly to support diverse annotation
tasks. For each project, new textual data can be
loaded to seek curations at sentence level, named
entity level or relationship level, or any combina-
tions of them. From MIC’s backend user interface,
one can associate a number of relevant ML mod-
els/dictionaries/rules to a project to allow quick
generation of machine labels. The textual data
can be fully unlabeled, partially labeled, or inte-
grated with ground truth labels. In cases where
the data is partially or fully labeled with ground
truths, the administrator can setup a built-in val-
idation process to monitor performance of anno-
tations as the task continues. Annotation perfor-
mance can be evaluated by comparing ground truth
labels with human/machine generated labels, or
comparing ground truth labels against consensus
labels learned by weak supervision. The multi-user
setting allows MIC to involve multiple parties in
the annotation pipeline. Each project can allow
users with different roles such as Administrator,
Curator, Data Scientist, Reviewer, etc., and their
operational accesses are categorized and limited by
roles to ensure the integrity of the annotation task.

In conclusion, the main novelties of MIC are (1)
Extendable framework to integrate customized an-
notation models; (2) Multi-project and multi-user
management; (3) Support of multi-layer annota-
tions from sentences to entities and relations; (4)
State-of-art user interface design for annotations.

4 MIC Annotation

4.1 General Architecture

MIC is a web-based annotation system that was
developed using Django, Quasar and Vue.js frame-
works. As its conceptual framework shows (Fig-
ure 1), the frontend of MIC relies on Quasar and
Vue.js to provide a flexible and interactive user in-
terface. The main web application is developed in
Django, therefore we have a python native envi-
ronment and an integrated backend administrative
panel. One of MIC’s most notable features is its
web-based project management interface which al-
lows users to set up an annotation project, invite
annotators/reviewers, define task scope, setup ma-
chine models, and quickly manage exports/imports
of annotations and text. These management fea-

tures were achieved efficiently through Django’s
admin panel. MIC uses PostgreSQL to store the
textual data, manage project/user data, record an-
notation progress, and store all annotations.

Besides a series of Django REST Web APIs that
establish the backbone of the tool, MIC can be
extended to include a wide range of interactive
curation APIs for specific annotation tasks. This
means MIC plays the role of a web annotation
server while other endpoints can be distributed on
multiple machines as machine labeling servers to
optimize the computational balance and latency of
annotations.

4.2 Annotation Interface

The main annotation layout is composed of three
connected areas: automatic labeling zone (left
panel), annotation zone (central panel), and sum-
marization zone (right panel), as shown in Figure 2.

MIC provides three types of automatic labeling
tools to speed up annotation: machine models, dic-
tionaries and rules. At the same time, MIC also sup-
ports annotation at three different levels: sentences,
entities and relationships. Users can freely choose
the most appropriate auto-tool to annotate text at
the most relevant level. For each annotator, MIC
allows arbitrary stacking of human/machine labels
on the text. To successfully save the results of an
annotator’s work, MIC will check whether there
are any contradictory labels assigned to a unique
token sequence. For example, the entity labels of
Nikolaus van der Pas can be saved as (Nikolaus:
Person), (van der Pas: Person), (Nikolaus: Entity)
and (Pas: Entity). MIC allows saving all four differ-
ent annotations though they overlap on each other.
However, MIC will ask for resolution if the unique
token sequence (sentence position dependent) Niko-
laus van der Pas has two contradictory labels. The
reason of allowing flexible annotations as such is
to minimize the burden of human resolutions. As a
matter of fact, lots of similar conflicts can be con-
sidered as noise, and can be resolved successfully
by well-designed machine learning models.

With MIC, annotators can create three levels
of labels simultaneously, which means users can
switch back and forth among the three levels and
complete the labels for each page. In another way,
annotators can focus on sentence-level annotation
of all pages first and save the results, and the revisit
and finish annotations for the other two layers later.
Every annotation task can be scoped as arbitrary

226



Figure 1: An overview of general architecture of MIC

Figure 2: Annotation Interface of MIC

combinations of labels from the three levels. This
feature make MIC very useful to gather important
annotations from different perspectives for a same
data set iteratively, which is commonly desired in
industrial applications.

4.3 Annotation Summarization Panel

It is worth highlighting that MIC contains a well-
designed annotation summarization panel (right
panel) to efficiently and concisely provide valuable
information about the annotations provided by mul-
tiple users. The panel has four controllable head
icons: (1) Annotations, (2) Sorting, (3) Users, and
(4) Issues. If a reviewer wants to group all annota-
tions by categories, she can review all labels using
the Annotations icon. Click-in will expand into
all individual labels, and reviewer acceptance and
rejection can be applied here. MIC supports all an-
notations being associated with confidence scores.
For human annotators we can fix the score as 1
or allow them to explicitly score their confidence
per each annotation. For machine learning mod-
els, the API Endpoints must return an additional

output parameter representing uncertainty. Thus, a
reviewer can rank all candidate annotations by their
uncertainty scores using the sorting function. The
third function Users allows the reviewer to group
all annotations by annotator. Here, the reviewer
can accept or reject all annotations from a specific
annotator. This feature, combined with the ease of
integrating weak labelers, makes MIC a great weak
supervision data preparation tool. For example, the
annotator can quickly try out multiple weak label-
ers, view some of their annotations, choose to reject
the noisy labelers, and then export the remaining
labels to be fed into an offline model to denoise
the weak labels. The last function Issues is used to
highlight potential conflicts that may be of concern
for the reviewer such as contradictory annotations
on the same unique token sequence. Another fea-
ture in this summarization panel is that clicking on
any annotation listed here will redirect and high-
light the corresponding tokens in the original text.
This feature is very useful to quickly review and
correct the annotations.

227



5 Case Studies

5.1 Market News Insider Trade Annotation
In the case study demo, the goal is to use MIC to
extract facts about potential insider trades from a
financial news feed. We assume the user is a sub-
ject matter expert (SME) curator with some basic
knowledge of NLP and machine learning. The an-
notator has several goals. Firstly, from all the news
feeds she needs to select those that are relevant to
insider selling or buying. Since there is no machine
learning model classifier distinguishing the insider
trading concept at hand, the annotator decides to
use a simple rule inside buy/sell to quickly gener-
ate machine labels. The rule is defined as a SpaCy
rule in the admin panel such that if a sentence after
lemmatization contains both words inside and buy
or sell, then the machine auto-generated label will
be set to Inside Trade. The annotator reviews re-
sults at the sentence-level panel, and manually cor-
rects some mistaken predictions. Then, she saves
the sentence labeling results and hides all sentences
that are not related to insider trading. She switches
the annotation panel from sentence to NER label-
ing, and uses several out-of-the-box NER models
(i.e. from FLAIR (Akbik et al., 2019) or SpaCy) to
quickly generate automatic NER tags for persons,
organizations, locations, and others.

Next, the annotator switches the panel from NER
to Relation to extract semantic relationships about
insider trading. Her goal here is to extract buy and
sell relationships that occur between two entities
(usually the subject person entity is defined as the
head and the object stock entity is defined as the
tail). Instead of spending tedious effort to find de-
sired relationships manually, the annotator applies
an open relation extraction (OpenRE) model to au-
tomatically extract candidate relationships. If the
annotator wants to further designate the extracted
relationships as one of the three pre-defined types
buy, sell and own, she can change the relation type
to any text in the confirmation menu.

The MIC OpenRE model is based on the MaMa
open information extraction (OpenIE) model de-
scribed in (Wang et al., 2020) and built using the
code from (theblackcat102, 2020). The OpenRE
model carries out several steps such as named en-
tity recognition, verb phrase pattern matching, pre-
trained language model inference, and triplet post-
processing. Since each step may produce uncer-
tainty in its output, the OpenRE approach tends to
generate noisy candidate relationships.

In our demo, we published an OpenRE endpoint
API that uses BERT-large-cased as the pre-trained
language model (Devlin et al., 2019). For each
page, it may produce about 40 to 100 noisy re-
lations. Thus, the annotator needs to review and
confirm all outputs in the summarization panel.

This case study demonstrates how to use MIC to
accomplish multiple tasks of annotation, starting
from sentence labeling, then named entity detec-
tion and finally extract important financial seman-
tic relationships from text. All annotated entities
and relationships are associated with three different
positional indices: (1) sentence index, (2) token po-
sition index, and (3) character position index. This
allows precise identifications and visualizations of
extracted entities and relationships. Users can save
these annotations and visualize them directly in
MIC, or export them as JSON format for general
machine learning model training and validation
outside of MIC.

6 Evaluation of Annotation Efficiency
and Accuracy

We conducted a benchmark study to investigate the
efficiency and accuracy of MIC in real annotations.
Three different data sets were used for task prepa-
ration: (1) CoNNL2003 (Tjong Kim Sang and
De Meulder, 2003); (2) NYT Open Relation Extrac-
tion Benchmark (Mesquita et al., 2013); (3) Propri-
etary fintech customer support call transcripts. The
first and second data sets are publicly accessible
and widely used as NER and Relation Extraction
benchmarks. The third data is a proprietary data set
and the goal is to obtain three levels of annotations.
The first level is sentence tagging: the annotator
needs to extract the main customer complaint sen-
tences from the call transcript if the complaint is
related to buy/sell financial product (stocks/funds),
denoted as a buy/sell relevant sentence. All other
sentences are irrelevant. The second level is NER:
Among the relevant sentences, tag any mentioned
financial products (stock/fund tickers, bank names,
and others) as named entities. The third level is to
annotate any unary relationship, if related to buy
or sell, of annotated entities if mentioned in the
same sentence. For example, Sell Apple Stock,
Buy NVDA, Exchange Money Market Funds, and
so on. We compared four annotation tools, includ-
ing free version of Prodigy, YEDDA (Yang et al.,
2018), GATE(Bontcheva et al., 2013) and the pro-
posed MIC tool. Four annotators selected from the

228

https://huggingface.co/bert-large-cased


2Tool CoNNL NYT Call
Avg Time F1-score Avg Time F1-score Avg Time F1-score

Prodigy 63 0.75 94 0.52 208 0.86
YEDDA 85 0.76 101 0.60 189 0.82
GATE 84 0.75 118 0.62 150 0.78
MIC-NM 45 0.74 74 0.64 60 0.84
MIC-M 38 0.78 95 0.59 44 0.88

Table 2: Comparison of Average Annotation Time (integers as minutes) for different tasks and the Average F1-
scores.

master internship program were trained to perform
annotations. Each annotator spent about 2 hours
on each tool using labeled data to get familiar with
a tool’s specific annotation mechanism. Then, a
random sample of 50-sentence corpora from data
sets (1) and (2), and 20 random transcriptions of
data set (3) were assigned for annotation. For each
annotator, sentences/transcriptions were stratified
samplings by different annotation tools, so there
was no occurrence of seen sentences across differ-
ent tools. In this setting, each task had four samples,
assigned to four annotators in parallel and all an-
notated once using the same tool. Because data in
all tasks comes with ground truth labels, we mea-
sure annotation performance in this step through
evaluating the micro-entity precision, recall, and
then calculate the F1 scores of the annotated labels
against the ground truth labels. The average anno-
tation time and F1-scores of four annotators spent
on this task-tool combination were recorded and
compared in Table 2. Notice that CONLL and NYT
are popular data sets studied in literature, and the
best F1-score achieved by ML models on CONLL
is around 0.76(Parker and Yu, 2021), and 0.59 for
NYT (Sun and Wu, 2019).

We compared MIC in two configurations: (1)
MIC-NM only allowed manual annotations, so no
pre-trained model was used. (2) MIC-M included
pre-trained annotation models so annotators could
confirm final labels using auto-annotations. In the
MIC-M setting, MIC included four NER models
(FLAIR, FINBERT HMM, EN CORE WEB MD,
SNIPS), one MaMa RE model (Wang et al., 2020),
and a proprietary intent classification model to clas-
sify sentences. The average annotation time of four
annotators, and the F1-score of their annotated re-
sults evaluated by ground truths, are reported in
Table 1. As shown, on almost all tasks, MIC signif-
icantly reduced annotation time and obtained com-
parable performance. One exception was for the

NYT task using MIC-M, where the MAMA (Wang
et al., 2020) model was slow in execution, and re-
sults were very noisy. Thus annotators spent extra
effort filtering the results and accidental misses
caused performance drop. In particular, annota-
tors found MIC very helpful in annotating long
call transcripts because it provided a friendly in-
terface filtering irrelevant sentences and allowed
smooth switches among sentence/entity/relation
annotations. In contrast, in other tools, annota-
tors were overwhelmed by a dominant number
of unrelated sentences, which caused serious dis-
tractions. Another advantage annotator liked MIC
most was the stacked investigation of multiple auto-
annotations tagged by pre-trained models, espe-
cially on CONNL task where pre-trained NER
models were domain-homogeneous. In contrast,
when annotating financial product entities, the four
pre-trained models were not very helpful, mainly
because those models had never adapted to the Fi-
nancial NER domain.

7 Scalability and Deployment

For budget reasons, the demo system of MIC
hosted at www.textmic.com is deployed on a sin-
gle AWS T3.xlarge instance. However, RESTFUL
APIs can be distributed to different physical in-
stances for better performance and richer model
capacity. Thus MIC could host a wide range of
large-scale pre-trained models in its library and al-
low easy adaption of relevant models in specific
annotation tasks.

8 Future Development

Our roadmap to enhance MIC for the future lies
ahead in several directions. We are interested
in connecting MIC to advanced processes cloud-
based APIs such as zero-shot learning, few-shot
learning, and textual entailment models to pro-
vide annotators access to more SoTA NLP models.

229



Figure 3: Django backend management of pre-trained
annotation models

Additionally, we’ll implement automated training
pipelines for several weak supervision algorithms
including (Ratner et al., 2017; Shang et al., 2018;
Parker and Yu, 2021) to allow automatic denoising
of conflicting human or machine labels.

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
Flair: An easy-to-use framework for state-of-the-art
nlp. In NAACL 2019, 2019 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59.

Marcel Bollmann, Florian Petran, Stefanie Dipper, and
Julia Krasselt. 2014. CorA: A web-based annota-
tion tool for historical and other non-standard lan-
guage data. In Proceedings of the 8th Workshop
on Language Technology for Cultural Heritage, So-
cial Sciences, and Humanities (LaTeCH), pages 86–
90, Gothenburg, Sweden. Association for Computa-
tional Linguistics.

Kalina Bontcheva, Hamish Cunningham, Ian Roberts,
Angus Roberts, Valentin Tablan, Niraj Aswani,
and Genevieve Gorrell. 2013. Gate teamware: a
web-based, collaborative text annotation framework.
Language Resources and Evaluation, 47:1007–
1029.

Wei-Te Chen and Will Styler. 2013. Anafora: A web-
based general purpose annotation tool. In Proceed-
ings of the 2013 NAACL HLT Demonstration Ses-
sion, pages 14–19, Atlanta, Georgia. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),

pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Volker Gast, Lennart Bierkandt, and Christoph Rzym-
ski. 2015. Creating and retrieving tense and aspect
annotation with graphanno, a lightweight tool for
multi-level annotation. In ACL 2015.

Xiaochuang Han and Jacob Eisenstein. 2019. Unsu-
pervised domain adaptation of contextualized em-
beddings for sequence labeling. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4238–4248, Hong Kong,
China. Association for Computational Linguistics.

Matthias Hartung, Hendrik ter Horst, Frank Grimm,
Tim Diekmann, Roman Klinger, and Philipp Cimi-
ano. 2018. SANTO: A web-based annotation tool
for ontology-driven slot filling. In Proceedings
of ACL 2018, System Demonstrations, pages 68–
73, Melbourne, Australia. Association for Compu-
tational Linguistics.

Johannes Kiesel, Henning Wachsmuth, Khalid Al-
Khatib, and Benno Stein. 2017. WAT-SL: A cus-
tomizable web annotation tool for segment label-
ing. In Proceedings of the Software Demonstra-
tions of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 13–16, Valencia, Spain. Association for Com-
putational Linguistics.

Jonathan K. Kummerfeld. 2019. SLATE: A super-
lightweight annotation tool for experts. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics: System Demonstra-
tions, pages 7–12, Florence, Italy. Association for
Computational Linguistics.

Frédéric Landragin, Thierry Poibeau, and Bernard Vic-
torri. 2012. ANALEC: a new tool for the dynamic
annotation of textual data. In Proceedings of the
Eighth International Conference on Language Re-
sources and Evaluation (LREC-2012), pages 357–
362, Istanbul, Turkey. European Languages Re-
sources Association (ELRA).

Dong-Ho Lee, Rahul Khanna, Bill Yuchen Lin, Seyeon
Lee, Qinyuan Ye, Elizabeth Boschee, Leonardo
Neves, and Xiang Ren. 2020. LEAN-LIFE: A
label-efficient annotation framework towards learn-
ing from explanation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 372–
379, Online. Association for Computational Linguis-
tics.

Bill Yuchen Lin, Dong-Ho Lee, Frank F. Xu, Ouyu
Lan, and Xiang Ren. 2019. AlpacaTag: An active
learning-based crowd annotation framework for se-
quence tagging. In Proceedings of the 57th Annual

230

https://doi.org/10.3115/v1/W14-0612
https://doi.org/10.3115/v1/W14-0612
https://doi.org/10.3115/v1/W14-0612
https://www.aclweb.org/anthology/N13-3004
https://www.aclweb.org/anthology/N13-3004
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1433
https://doi.org/10.18653/v1/D19-1433
https://doi.org/10.18653/v1/D19-1433
https://doi.org/10.18653/v1/P18-4012
https://doi.org/10.18653/v1/P18-4012
https://www.aclweb.org/anthology/E17-3004
https://www.aclweb.org/anthology/E17-3004
https://www.aclweb.org/anthology/E17-3004
https://doi.org/10.18653/v1/P19-3002
https://doi.org/10.18653/v1/P19-3002
http://www.lrec-conf.org/proceedings/lrec2012/pdf/638_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/638_Paper.pdf
https://doi.org/10.18653/v1/2020.acl-demos.42
https://doi.org/10.18653/v1/2020.acl-demos.42
https://doi.org/10.18653/v1/2020.acl-demos.42
https://doi.org/10.18653/v1/P19-3010
https://doi.org/10.18653/v1/P19-3010
https://doi.org/10.18653/v1/P19-3010


Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 58–63, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Stephen Mayhew and Dan Roth. 2018. TALEN: Tool
for annotation of low-resource ENtities. In Proceed-
ings of ACL 2018, System Demonstrations, pages
80–86, Melbourne, Australia. Association for Com-
putational Linguistics.

Filipe Mesquita, Jordan Schmidek, and Denilson Bar-
bosa. 2013. Effectiveness and efficiency of open
relation extraction. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 447–457, Seattle, Washing-
ton, USA. Association for Computational Linguis-
tics.

Jerrod Parker and Shi Yu. 2021. Named entity recogni-
tion through deep representation learning and weak
supervision. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3828–3839, Online. Association for Computational
Linguistics.

Alexander Ratner, Stephen H. Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. Proc. VLDB Endow., 11(3):269–282.

Younes Samih, Wolfgang Maier, and Laura Kallmeyer.
2016. SAWT: Sequence annotation web tool. In
Proceedings of the Second Workshop on Computa-
tional Approaches to Code Switching, pages 65–70,
Austin, Texas. Association for Computational Lin-
guistics.

Jingbo Shang, Liyuan Liu, Xiaotao Gu, Xiang Ren,
Teng Ren, and Jiawei Han. 2018. Learning named
entity tagger using domain-specific dictionary. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
2054–2064, Brussels, Belgium. Association for
Computational Linguistics.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107, Avignon, France. Association for
Computational Linguistics.

Michael Stewart, Wei Liu, and Rachel Cardell-Oliver.
2019. Redcoat: A collaborative annotation tool
for hierarchical entity typing. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, Novem-
ber 3-7, 2019 - System Demonstrations, pages 193–
198. Association for Computational Linguistics.

Changzhi Sun and Yuanbin Wu. 2019. Distantly su-
pervised entity relation extraction with adapted man-
ual annotations. In The Thirty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial In-
telligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 7039–7046.
AAAI Press.

theblackcat102. 2020. language-
models-are-knowledge-graphs-
pytorch. https://github.com/theblackcat102/

language-models-are-knowledge-graphs-pytorch.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Stephen Tratz and Nhien Phan. 2018. A web-based sys-
tem for crowd-in-the-loop dependency treebanking.
In Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation, LREC
2018, Miyazaki, Japan, May 7-12, 2018. European
Language Resources Association (ELRA).

Chenguang Wang, Xiao Liu, and Dawn Song. 2020.
Language models are open knowledge graphs.

Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li.
2018. YEDDA: A lightweight collaborative text
span annotation tool. In Proceedings of ACL 2018,
System Demonstrations, pages 31–36, Melbourne,
Australia. Association for Computational Linguis-
tics.

Seid Muhie Yimam, Iryna Gurevych, Richard
Eckart de Castilho, and Chris Biemann. 2013.
WebAnno: A flexible, web-based and visually
supported system for distributed annotations. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics: Sys-
tem Demonstrations, pages 1–6, Sofia, Bulgaria.
Association for Computational Linguistics.

231

https://doi.org/10.18653/v1/P18-4014
https://doi.org/10.18653/v1/P18-4014
https://www.aclweb.org/anthology/D13-1043
https://www.aclweb.org/anthology/D13-1043
https://doi.org/10.18653/v1/2021.findings-acl.335
https://doi.org/10.18653/v1/2021.findings-acl.335
https://doi.org/10.18653/v1/2021.findings-acl.335
https://doi.org/10.14778/3157794.3157797
https://doi.org/10.14778/3157794.3157797
https://doi.org/10.18653/v1/W16-5808
https://doi.org/10.18653/v1/D18-1230
https://doi.org/10.18653/v1/D18-1230
https://www.aclweb.org/anthology/E12-2021
https://www.aclweb.org/anthology/E12-2021
https://doi.org/10.18653/v1/D19-3033
https://doi.org/10.18653/v1/D19-3033
https://doi.org/10.1609/aaai.v33i01.33017039
https://doi.org/10.1609/aaai.v33i01.33017039
https://doi.org/10.1609/aaai.v33i01.33017039
https://github.com/theblackcat102/language-models-are-knowledge-graphs-pytorch
https://github.com/theblackcat102/language-models-are-knowledge-graphs-pytorch
https://www.aclweb.org/anthology/W03-0419
https://www.aclweb.org/anthology/W03-0419
http://www.lrec-conf.org/proceedings/lrec2018/summaries/339.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/339.html
http://arxiv.org/abs/2010.11967
https://doi.org/10.18653/v1/P18-4006
https://doi.org/10.18653/v1/P18-4006
https://www.aclweb.org/anthology/P13-4001
https://www.aclweb.org/anthology/P13-4001

