@inproceedings{gauthier-melancon-etal-2022-azimuth,
title = "Azimuth: Systematic Error Analysis for Text Classification",
author = "Gauthier-melancon, Gabrielle and
Marquez Ayala, Orlando and
Brin, Lindsay and
Tyler, Chris and
Branchaud-charron, Frederic and
Marinier, Joseph and
Grande, Karine and
Le, Di",
editor = "Che, Wanxiang and
Shutova, Ekaterina",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = dec,
year = "2022",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-demos.30",
doi = "10.18653/v1/2022.emnlp-demos.30",
pages = "298--310",
abstract = "We present Azimuth, an open-source and easy-to-use tool to perform error analysis for text classification. Compared to other stages of the ML development cycle, such as model training and hyper-parameter tuning, the process and tooling for the error analysis stage are less mature. However, this stage is critical for the development of reliable and trustworthy AI systems. To make error analysis more systematic, we propose an approach comprising dataset analysis and model quality assessment, which Azimuth facilitates. We aim to help AI practitioners discover and address areas where the model does not generalize by leveraging and integrating a range of ML techniques, such as saliency maps, similarity, uncertainty, and behavioral analyses, all in one tool. Our code and documentation are available at github.com/servicenow/azimuth.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gauthier-melancon-etal-2022-azimuth">
<titleInfo>
<title>Azimuth: Systematic Error Analysis for Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gabrielle</namePart>
<namePart type="family">Gauthier-melancon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orlando</namePart>
<namePart type="family">Marquez Ayala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lindsay</namePart>
<namePart type="family">Brin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Tyler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frederic</namePart>
<namePart type="family">Branchaud-charron</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph</namePart>
<namePart type="family">Marinier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karine</namePart>
<namePart type="family">Grande</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Di</namePart>
<namePart type="family">Le</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present Azimuth, an open-source and easy-to-use tool to perform error analysis for text classification. Compared to other stages of the ML development cycle, such as model training and hyper-parameter tuning, the process and tooling for the error analysis stage are less mature. However, this stage is critical for the development of reliable and trustworthy AI systems. To make error analysis more systematic, we propose an approach comprising dataset analysis and model quality assessment, which Azimuth facilitates. We aim to help AI practitioners discover and address areas where the model does not generalize by leveraging and integrating a range of ML techniques, such as saliency maps, similarity, uncertainty, and behavioral analyses, all in one tool. Our code and documentation are available at github.com/servicenow/azimuth.</abstract>
<identifier type="citekey">gauthier-melancon-etal-2022-azimuth</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-demos.30</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-demos.30</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>298</start>
<end>310</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Azimuth: Systematic Error Analysis for Text Classification
%A Gauthier-melancon, Gabrielle
%A Marquez Ayala, Orlando
%A Brin, Lindsay
%A Tyler, Chris
%A Branchaud-charron, Frederic
%A Marinier, Joseph
%A Grande, Karine
%A Le, Di
%Y Che, Wanxiang
%Y Shutova, Ekaterina
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F gauthier-melancon-etal-2022-azimuth
%X We present Azimuth, an open-source and easy-to-use tool to perform error analysis for text classification. Compared to other stages of the ML development cycle, such as model training and hyper-parameter tuning, the process and tooling for the error analysis stage are less mature. However, this stage is critical for the development of reliable and trustworthy AI systems. To make error analysis more systematic, we propose an approach comprising dataset analysis and model quality assessment, which Azimuth facilitates. We aim to help AI practitioners discover and address areas where the model does not generalize by leveraging and integrating a range of ML techniques, such as saliency maps, similarity, uncertainty, and behavioral analyses, all in one tool. Our code and documentation are available at github.com/servicenow/azimuth.
%R 10.18653/v1/2022.emnlp-demos.30
%U https://aclanthology.org/2022.emnlp-demos.30
%U https://doi.org/10.18653/v1/2022.emnlp-demos.30
%P 298-310
Markdown (Informal)
[Azimuth: Systematic Error Analysis for Text Classification](https://aclanthology.org/2022.emnlp-demos.30) (Gauthier-melancon et al., EMNLP 2022)
ACL
- Gabrielle Gauthier-melancon, Orlando Marquez Ayala, Lindsay Brin, Chris Tyler, Frederic Branchaud-charron, Joseph Marinier, Karine Grande, and Di Le. 2022. Azimuth: Systematic Error Analysis for Text Classification. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 298–310, Abu Dhabi, UAE. Association for Computational Linguistics.