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Abstract

In this paper we present SYNKB,1 an open-
source, automatically extracted knowledge
base of chemical synthesis protocols. Simi-
lar to proprietary chemistry databases such as
Reaxsys, SYNKB allows chemists to retrieve
structured knowledge about synthetic proce-
dures. By taking advantage of recent advances
in natural language processing for procedural
texts, SYNKB supports more flexible queries
about reaction conditions, and thus has the po-
tential to help chemists search the literature for
conditions used in relevant reactions as they
design new synthetic routes. Using customized
Transformer models to automatically extract in-
formation from 6 million synthesis procedures
described in U.S. and EU patents, we show that
for many queries, SYNKB has higher recall
than Reaxsys, while maintaining high preci-
sion. We plan to make SYNKB available as an
open-source tool; in contrast, proprietary chem-
istry databases require costly subscriptions.2

1 Introduction

Commercial chemistry databases, such as Reaxys3

are invaluable tools for chemists, who issue struc-
tured SQL-like queries to retrieve precise infor-
mation about chemical reactions described in the
literature. Large, high-quality datasets are also cru-
cial for synthetic route planning (Klucznik et al.,
2018), automation (Coley et al., 2019b; Collins
et al., 2020), and machine learning approaches to
retrosynthesis (Coley et al., 2019a). In addition
to proprietary, manually curated databases such as
Reaxys, recent work has begun to use automatically
extracted data from reactions described in patents
(Tetko et al., 2020), however existing databases are
limited to basic reaction information, and do not

1Demo URL: https://tinyurl.com/synkb
Introduction video: https://screencast-o-matic.

com/watch/c3jVQsVZwOV
2Code: https://github.com/bflashcp3f/SynKB.
3
https://www.elsevier.com/solutions/reaxys

include important details such as concentrations or
order of additions (Coley et al., 2019b). The lack
of high-quality data has been identified as a key
challenge in developing recommendation models
for reaction conditions (Struble et al., 2020).

In this paper, we present SYNKB, a working sys-
tem that demonstrates the application of modern
NLP methods to extract large quantities of struc-
tured information about chemical synthesis proce-
dures from text. SYNKB has a number of advan-
tages with respect to existing chemistry databases
such as Reaxys: (1) We show that by automatically
extracting information from millions of synthesis
procedures described in U.S. and European patents
using state-of-the-art NLP methods, we can achieve
significantly higher recall than existing chemistry
databases while maintaining high precision. In
§3, we demonstrate SYNKB’s coverage is comple-
mentary to Reaxys; see Figure 2 for details. (2)
SYNKB’s novel graph search supports better cover-
age of reaction conditions than existing chemistry
databases; this includes concentrations, reaction
times, order of the addition of reagents, catalysts,
etc. (3) We will make SYNKB available as open-
source software on publication, in contrast, most
existing chemistry databases are proprietary, with
the notable exception of Lowe (2017), which we
compare to in §3.

We have built an online demo, which can be
viewed at the following URL: https://tinyurl.
com/synkb. We will also release the source code
and patent-based extractions used to build SYNKB
on publication.

2 SYNKB

SYNKB is an open-source system that allows
chemists to perform structured queries over large
corpora of synthesis procedures. In this section, we
present each component of SYNKB, as illustrated
in Figure 1. Our corpus collection is first presented
in §2.1. Section 2.2 describes how a corpus of six
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(6 million synth. procedures)

US06169084  - Preparation of (2-methyl-4-(4-methyl-1-
piperazinyl)-10H-thieno[2,3-b][1,5]benzodiazepine)dihydrate E. 
1. A 0.5 g sample of technical grade olanzapine was suspended in ethyl 
acetate (10 mL) and toluene (0.6 mL).

2. The mixture was heated to 80° C. until all the solids dissolved.

3. The solution was cooled to 60° C. and water (1 mL) was added slowly.

   …

7. TGA mass loss was 10.5%.

8. Yield: 0.3 g.

Synthesis Procedures Semantic Search

Q: What solvents are used in the reactions that produce 
(2-methyl-4-(4-methyl-1-piperazinyl…?

Patent ID Solvent Full Procedure
US06169084 ethyl acetate / toluene A 0.5 g sample of…

… … …

Q: What amount is ethyl acetate at when used to 
suspend olanzapine?

Patent ID Amount Full Procedure
US06169084 10 mL A 0.5 g sample of…

… … …

Extracted Information

2. Slot Filling (procedure-level)
Patent ID Reagent Solvent Product Yield …

US06169084 olanzapine ethyl acetate / toluene (2-methyl-4-(4-methyl..) 0.3 g …
… … … … … ….

1. Shallow Semantic Parsing (operation-level)

Figure 1: Overview of our semantic search system SYNKB, which searches over 6 million chemical synthesis
procedures collected from patents. Users can enter structured queries to retrieve procedures concerning procedure-
level or operation-level information.

million procedures is annotated with sentence-level
action graphs, in addition to protocol-level slots
relevant to chemical reactions, including starting
materials, solvents, reaction products, yields, etc.
After automatically annotating and indexing, we
experiment with the semantic search capabilities
enabled by SYNKB in §2.3.

2.1 Corpus Collection

We extract structured representations of synthetic
protocols from a corpus of chemical patents (Bai
et al., 2021), which includes over six million chem-
ical synthesis procedures extracted from around
300k U.S. and European patents (written in En-
glish). The U.S. portion of this corpus comes
from an open-source corpus of chemical synthe-
sis procedures (Lowe, 2017), which covers 2.4
million synthetic procedures extracted from U.S.
patents (USPTO4, 1976-2016). For the European
portion, we apply the Lowe (2017) reaction identi-
fication pipeline to European patents. Specifically,
we download patents from EPO5 (1978-2020) as
XML files and select patents containing the IPC
(International Patent Classification) code ‘C07’ for

4
https://www.uspto.gov/

learning-and-resources/bulk-data-products
5
https://www.epo.org/searching-for-patents/

data/bulk-data-sets.html

processing as they are in the category of organic
chemistry. Next, the synthesis procedure identifier
developed by Lowe (2012), a trained Naive Bayes
classifier, is applied to the Description section of
all selected patents. As a result, we obtain another
3.7 million procedures from European patents.

2.2 Extracting Reaction Details from
Synthetic Procedures

To facilitate semantic search, we automatically
annotate the corpus of 6 million synthetic proce-
dures described above with semantic action graphs
(Kulkarni et al., 2018) in addition to chemical reac-
tion slots (Nguyen et al., 2020) using Transformer
models that are pre-trained on a large corpus of
scientific procedures (Bai et al., 2021).

Shallow Semantic Parsing. We first perform
sentence-level annotation, where each step in the
procedure is annotated with a semantic graph
(Tamari et al., 2021). Nodes in the graph are ex-
perimental operations and their typed arguments,
whereas labeled edges specify relations between
the nodes (see the example shallow semantic parse
in Figure 1). Here we use the CHEMSYN frame-
work (Bai et al., 2021), which covers 24 types of
nodes (such as Action, Reagent, Amount, Equip-
ment, etc.) and 17 edge types (e.g. Acts-on and
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Measure). With these annotated semantic graphs,
users can search for operation-level information,
for example, the amount of DMF when used as a sol-
vent to dissolve HATU (this will be further discussed
in §3). Following Tamari et al. (2021), we split
semantic graph annotation into two sub-tasks, Men-
tion Identification (MI) for node prediction and Ar-
gument Role Labeling (ARL) for edge prediction.
We use the same fine-tuning architectures as in
Tamari et al. (2021). Models are fine-tuned on the
CHEMSYN corpus, which consists of 992 chemical
synthesis procedures extracted from patents, and
the resulting performance (averages across five ran-
dom seeds) is shown in Table 1. We select model
checkpoints via the Dev set performance out of five
random seeds, and use the selected checkpoint for
inference on our 6 million synthetic procedures.

Slot Filling. In the second task, we annotate pro-
cedures from a protocol perspective, i.e., identify-
ing key entities playing certain roles in a protocol,
which can be queried in a slot-based search. We use
the CHEMU training corpus proposed in Nguyen
et al. (2020). This dataset includes 10 pre-defined
slot types concerning chemical compounds and re-
lated entities in chemical synthesis processes such
as Starting Material, Solvent, and Product. Similar
to the Mention Identification task, we treat Slot
Filling as a sequence tagging problem. However,
the input in Slot Filling is the entire protocol, rather
than a single sentence, as in mention identification.
We fine-tune models on the CHEMU dataset (see
Table 1 for results), and then run inference on the
chemical patent corpus using the learned model.

ProcBERT. We use ProcBERT (Bai et al., 2021),
a BERT-based model that is pre-trained on in-
domain data (scientific protocols), as the backbone
for all of our models, and develop task-specific
fine-tuning architectures on top of it. The com-
parison between ProcBERT and other pre-trained
models is presented in Table 1. Because ProcBERT
is pre-trained using in-domain data, we find that it
outperforms both BERTlarge (Devlin et al., 2019)
and SciBERT (Beltagy et al., 2019) on all three
tasks.

2.3 Semantic Search

SYNKB offers search modalities specific to each
of these two forms of annotation, i.e., semantic
action graphs and chemical reaction slots, along
with features designed to support practical use. The

Annotation Task Dataset Pre-trained Model
BERTlarge SciBERT ProcBERT

Mention Identification CHEMSYN
95.260.1 95.820.2 95.970.2

Argument Role Labeling 92.870.5 93.270.2 93.570.2

Slot Filling CHEMU 95.100.2 95.630.1 96.190.1

Table 1: Test set F1 scores of fine-tuned models for
the three annotation tasks. These numbers, averages
across five random seeds with standard deviations as
subscripts, are taken from our previous work Bai et al.
(2021). Models using ProcBERT for contextual em-
beddings perform the best on all three tasks and are
used for automatic annotations on six million synthesis
procedures to construct SYNKB.

SYNKB (ours) USPTO-Lowe Reaxys

License Open source Open source Subscription
# Procedures (mill.) 6 2.4 57
# Entity Types 24 8 10
# Relation Types 17 - -
Annotation Automatic Automatic Manual

Table 2: Comparison between our SYNKB and two
performant databases. Our SYNKB provides more fine-
grained annotations (more entity types and unique rela-
tion annotations) than the other two systems and covers
more procedures than USPTO-Lowe, a database built us-
ing the largest open-source synthesis procedure corpus
(Lowe, 2017).

first type of query supported by SYNKB is seman-
tic graph search, which allows users to search
for synthesis procedures based on the semantic
parse of the constituent operations. We adapt the
graph query formalism proposed originally for syn-
tactic dependencies in Valenzuela-Escárcega et al.
(2020).6 Formally, the input query G = (V,E)
is a labeled directed graph. Each node vi ∈ V is
specified as a set of constraints on matching entities
(a single or multi-token span). For example, users
can specify the node as DMF or [word=DMF], which
triggers an exact match on entity mentions con-
taining the word “DMF”. They can also constrain
the entity type of the node using the expression
[entity=Type].7 Moreover, nodes can be named
captures when surrounded with (?<name>...),
e.g., the query (?<solvent> DMF) captures DMF as
the solvent. As for the edge e = (vi, vj , l) ∈ E,
we need to specify the direction and the semantic re-
lation. Considering the query (?<solvent> DMF)
>measure (?<amount> 1 ml), it represents a se-

6We refer readers to the tutorial of Odinson query lan-
guage for more details of this graph query formalism.

7We store entity labels with the BIO tagging scheme,
so users can match a single token entity with the expression
[entity=B-Type] and a multi-token entity with the expres-
sion [entity=B-Type][entity=I-Type]*.
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mantic graph containing two entity nodes captured
as solvent and amount, and an edge signaling the
measure relation and its direction (from solvent
to amount).

In addition, SYNKB supports slot-based search,
which presents a structured search interface, with
entries corresponding to CHEMU slots. A keyword
entered into any entry restricts the retrieved set to
procedures where the extracted slot contains the
indicated keyword. Like the graph search, this
returns a set of tuples with elements named with
matching slots and containing the matching entity
strings. The special token “?” can be used to match
any slot value.

As for the implementation, the semantic graph
search module is powered by Odinson (Valenzuela-
Escárcega et al., 2020), an open-source Lucene-
based query engine. Odinson pre-indexes the an-
notated corpus by generating the inverted index for
each procedure. Given an input query, Odinson per-
forms a two-step matching process, where it first
examines the node constraints via the inverted in-
dex; if this step works well, the semantic relations
will be verified in the second step. The two-step
matching process improves the speed of Odinson,
and thus enables interactive querying. As for the
slot-based search, it is supported by Elasticsearch8

with the exception that, when users perform both
types of search at the same time, we use the meta-
data search feature of Odinson for slot filters (we
store slot values as metadata) to improve the sys-
tem’s response speed.

3 Empirical Comparison

In §2, we described the design and implementa-
tion of SYNKB including the underlying models,
data preparation, and semantic search features. To
demonstrate the utility of SYNKB for assisting
chemists to search the literature for reaction details,
we now evaluate its search features on ten exam-
ple questions (Q1-Q10 in Table 3), which were
collected from synthetic chemists working on the
design of new synthesis protocols. In §3.1, we eval-
uate the slot-based search module of SYNKB and
compare it with two existing databases which pro-
vides similar search features. In §3.2, we demon-
strate how to use our novel semantic graph search
module to answer operation-specific questions and
evaluate its retrieved answers and procedures.

8
https://www.elastic.co/elasticsearch/

3.1 Slot-based Search Evaluation

We benchmark the slot-based search module of
SYNKB against Reaxys, one of the leading pro-
prietary chemistry databases, and USPTO-Lowe,
an automatically extracted database built using
a large open-source synthesis procedure corpus
(Lowe, 2017). Below, we first introduce these two
databases briefly, and then evaluate the results of all
three systems on the chemist-proposed questions.

3.1.1 Chemistry Databases

The first database we compare with is Reaxys, a
web-based commercial chemistry database, which
contains comprehensive chemistry data, includ-
ing chemical properties, compound structures, etc.
What particularly interests us in Reaxys is that it
contains expert-curated reaction procedures col-
lected from extensive published literature such as
chemistry-related patents and periodicals.9 Also,
key experimental entities in those reaction proce-
dures, like participating reagents and reaction tem-
perature, are specified. Thus, similar to our slot-
based search, Reaxys allows users to search for
reaction procedure information by applying text
filters. Users can use its Query Builder module
to specify multiple chemical reaction-specific fil-
ters, and then Reaxys returns all matched reaction
procedures along with identified entities in those
procedures, which are available for download.

Apart from Reaxys, we also build a database
using USPTO-Lowe (Lowe, 2017), the largest
available open-source chemical synthesis proce-
dure corpus as introduced in §2.1, for comparison.
Similar to our SYNKB, this corpus includes auto-
matic annotations of experimental entities on 2.4
million contained reaction procedures.10 However,
our SYNKB provides more fine-grained and com-
prehensive entity annotations (see Table 2 for the
statistics of three experimented databases), and also
annotates the relations between extracted entities,
which constitute semantic graphs (§2.2) enabling
operation-specific semantic graph search. As for
the implementation, we load USPTO-Lowe’s entity
annotation into Elasticsearch, so this customized
database can be used in the same way as the slot-
based search module of our SYNKB.

9
https://www.elsevier.com/solutions/reaxys/

features-and-capabilities/content
10
https://www.nextmovesoftware.com/leadmine.

html
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System Input Query # Proce. # Ans. Ans. Prec.

Slot-based Search

Q1 - What are the solvents used for reactions containing the reagent triphosgene?
Reaxys {"reagent":"triphosgene"} 35 7 100%
USPTO-Lowe

{"reagent":"triphosgene", "solvent":"?"}
3157 104 90%

SYNKB 7184 127 94%

Q2 - What are the yields (percent) of reactions producing (5-Methylpyrimidin-2-yl)methanol?
Reaxys {"product":"(5-Methylpyrimidin-2-yl)methanol"} 1 1 100%
USPTO-Lowe

{"product":"(5-Methylpyrimidin-2-yl)methanol", "yield (percent)":"?"}
1 1 100%

SYNKB 1 1 100%

Q3 - What are the products of reactions containing the reagent trimethylsilyldiazomethane?
Reaxys {"reagent":"trimethylsilyldiazomethane"} 438 75 100%
USPTO-Lowe

{"reagent":"trimethylsilyldiazomethane", "product":"?"}
517 335 98%

SYNKB 1033 708 96%

Q4 - What are the products of reactions containing the reagent chlorosulfonic acid and the solvent chlorobenzene?
Reaxys {"reagent":"chlorosulfonic acid"} AND {"solvent":"chlorobenzene"} 148 65 100%
USPTO-Lowe

{"reagent":"chlorosulfonic acid", "solvent":"chlorobenzene", "product":"?"}
6 2 100%

SYNKB 9 4 100%

Q5 - What are the reaction times for reactions using reagent CDI (carbonyldiimidazole)?
Reaxys {"reagent":"CDI"} OR {"reagent":"carbonyldiimidazole"} 93 24 100%
USPTO-Lowe

{"reagent": "CDI OR carbonyldiimidazole", "reaction time":"?"}
3722 339 100%

SYNKB 6377 511 94%

Q6 - What are the reaction temperatures for reactions containing reagent trifluoromethanesulfonic acid?
Reaxys {"reagent":"trifluoromethanesulfonic acid"} 104 3 100%
USPTO-Lowe

{"reagent":"trifluoromethanesulfonic acid", "temperature":"?"}
727 124 100%

SYNKB 1937 243 98%

Semantic Graph Search

Q7 - What are the reagents used to dilute plasma?

SYNKB
plasma <acts-on diluted >using (?<reagent>
[entity=B-Reagent][entity=I-Reagent]*)

24 16 100%

Q8 - What is the pH of a solution after being titrated with NaOH?
SYNKB (?<ph> [entity=B-pH][entity=I-pH]+) <setting titrated >using NaOH 39 21 95%

Q9 - What are the common pore sizes of PTFE filters?

SYNKB
PTFE filter >measure (?<pore_size>
[entity=B-Generic-Measure][entity=I-Generic-Measure]*)

183 39 92%

Q10 - What molar concentration is the reagent HATU at when dissolved in the solvent DMF?

SYNKB
HATU >measure (?<mole> [] [word=mmol|word=mol]) []{1,10} DMF >measure
(?<volume> [] [word=ml|word=l])

447 289 100%

Table 3: Search queries and resulting performance on 10 chemist-proposed questions for Reaxys, USPTO-Lowe,
and SYNKB (ours). # Proc. is the number of returned procedures containing valid answers, and # Ans. refers to the
number of distinct answer slots or captures in these procedures. The first six questions (Q1-Q6) are answerable
for all three databases as they only require entity annotation while the last four questions (Q7-Q10) can only be
answered by our SYNKB using our unique semantic action graph annotation. SYNKB consistently shows better
recall than two compared databases while being highly accurate.

3.1.2 Comparison with Examples

We now compare three systems on six ques-
tions that were proposed by chemists (Q1-Q6)
as these questions only require annotations on
experimental entities and thus can be answered
in all three systems. For example, Q1 (“What
solvents are used in reactions involving triphos-
gene?”) can be answered by the SYNKB
query {"reagent":"triphosgene", "solvent":"?"},
as reagent and solvent are query-able ChEMU slots.
Similarly, for Reaxys, experimental entities are
specified for corresponding text filters.

We evaluate the output of each system from two
perspectives: 1) recall, which is measured by the
number of returned procedures containing valid

answers and the number of distinct answer slots or
captures in these procedures; and 2) precision, the
proportion of correct answers among all predicted
answers. In cases where the number of answers
exceeds 50, we sample 50 answers from the full set
to estimate precision.

The search queries and performance on each
question for the three systems are shown in Ta-
ble 3. We can see that, SYNKB consistently re-
trieves a larger number of relevant procedures and
answers than Reaxys (5 out of 6 questions) while
maintaining high precision. USPTO-Lowe, which
uses a rule-based annotation model, shows compet-
itive performance on precision but trails behind our
SYNKB in terms of recall for all 6 questions. This
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comparison clearly shows the strength of our sys-
tem: by leveraging state-of-the-art NLP for chem-
ical synthesis procedures (Bai et al., 2021), we
can provide chemists with abundant information,
which is non-proprietary and delivered with high
precision. Furthermore, we plot the Venn diagram
(Figure 2) over the retrieved answers, which shows
the percentage of unique and shared answers for
each system out of all retrieved answers (we do
macro-average across six questions.) Interestingly,
only 18.1% of retrieved answers are shared among
all three systems, and both our SYNKB and Reaxys
contain a large number of unique answers, which
take 31.5% and 17.4% of retrieved answers respec-
tively. This shift in answer distribution suggests
that our open-source SYNKB can be a good com-
plement to proprietary chemistry databases like
Reaxys, and it is better for users to use both of
them if possible instead of choosing one over the
other.

3.2 Semantic Graph Search Evaluation

We evaluate our novel semantic graph search
on four operation-specific questions (Q7-Q10).
Unlike the six questions introduced above, these
questions place constraints on the relations
between mentioned entities, and thus are not
answerable for Reaxys and USPTO-Lowe (due
to the lack of relation annotation). For instance,
to answer Q7 “What are the reagents used to
dilute plasma?”, a system needs to first locate the
particular operation in a procedure where plasma
is diluted, and then identify the reagent, which fa-
cilitates this dilution operation. This whole process
can be realized in our semantic graph search mod-
ule. Concretely, the graph-based query we use for
Q7 is: “plasma <acts-on diluted >using (?<reagent>

[entity=B-Reagent][entity=I-Reagent]*)”, which
matches procedures containing “plasma” and
“diluted” connected in the same semantic graph
and returns used reagents in the form of named
captures. We evaluate the performance of the
semantic graph search module by manually
inspecting predicted answers (randomly sampling
50 answers for Q10), and show results in Table
3. Similar to the findings in the slot-based search
evaluation, SYNKB shows good coverage while
maintaining high precision.

SynKB

Reaxys USPT
O-Lo

we

18.2%
0.1% 23.6%

31.5%

17.4% 9.2%
0.0%

Figure 2: Venn diagram on the answer distribution of six
slot-based search questions (macro-average) for all three
databases. We can see that both our SYNKB and Reaxys
cover high percentage of unique answers, suggesting
that users should use them together if possible.

4 Related Work

Lowe (2012) was the first to develop a complete
information extraction pipeline for chemical syn-
thesis procedures, using a mostly rule-based ap-
proach. Subsequently, there have been several
efforts to extract information from experimental
procedures by either developing more performant
extraction models (Vaucher et al., 2020; Guo et al.,
2021) or designing extraction frameworks for other
types of scientific literature, like wet-lab protocols
(Kulkarni et al., 2018) and material science publica-
tions (Mysore et al., 2019; Kuniyoshi et al., 2020;
Olivetti et al., 2020; O’Gorman et al., 2021). In this
paper, we use the state-of-the-art NLP models for
chemical synthesis procedures (Bai et al., 2021) to
build the largest open-source knowledge base that
searches synthetic procedure details. Our system
is complementary to many proprietary chemistry
databases, such as Reaxys, SciFinder11, and Pis-
tachio12, in terms of contained information and
search modalities.

Recent work has also developed slot-based
classifiers to extract structured representations of
events (from social media), supporting structured
queries (Zong et al., 2020). In contrast, we present
a semantic search system, which is customized
for chemical synthesis procedures with specialized
search features. In addition, recent work has ex-
plored extractive search systems (Ravfogel et al.,
2021) that allow experts to specify syntactic pat-

11
https://scifinder.cas.org

12
https://www.nextmovesoftware.com/pistachio.

html
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terns, including syntactic structures of the input
and capture slots. The graph-based queries in our
SYNKB enable a similar capability in the domain
of synthetic procedures, however SYNKB’s queries
are defined over semantic graphs that encode ac-
tions in synthetic protocols and associated semantic
arguments.

5 Conclusion

In this paper, we present SYNKB, a system for
large-scale extraction and querying of chemical
synthesis procedures. SYNKB provides efficient
searches against semantic action graphs and chemi-
cal reaction slots derived from 6 million synthesis
procedures contained in chemical patents. A quan-
titative comparison with Reaxys, one of the lead-
ing commercial databases of reaction information,
demonstrates the competence and versatility of our
freely accessible system.

Ethical Considerations and Broader
Impacts

Proprietary chemistry databases, such as Reaxys
require costly subscriptions, limiting scientific in-
quiry for those who do not have the means to access
this valuable source of information. In this paper,
we presented an open-source semantic search sys-
tem, SYNKB, which demonstrates state-of-the-art
NLP methods can enable automatically extracted
databases of synthetic procedure operational details
that are competitive with Reaxys in terms of recall.
We will make our code and data freely available.

The data contained in SYNKB is based on au-
tomatic extraction from both European and U.S.
patents that are in the public domain. Our use com-
plies with the terms of service of the U.S. Patent
and Trademark Office and the European Patent Of-
fice.
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