@inproceedings{pacheco-etal-2022-hands,
title = "Hands-On Interactive Neuro-Symbolic {NLP} with {DR}ai{L}",
author = "Pacheco, Maria Leonor and
Roy, Shamik and
Goldwasser, Dan",
editor = "Che, Wanxiang and
Shutova, Ekaterina",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = dec,
year = "2022",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-demos.37",
doi = "10.18653/v1/2022.emnlp-demos.37",
pages = "371--378",
abstract = "We recently introduced DRaiL, a declarative neural-symbolic modeling framework designed to support a wide variety of NLP scenarios. In this paper, we enhance DRaiL with an easy to use Python interface, equipped with methods to define, modify and augment DRaiL models interactively, as well as with methods to debug and visualize the predictions made. We demonstrate this interface with a challenging NLP task: predicting sentence and entity level moral sentiment in political tweets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pacheco-etal-2022-hands">
<titleInfo>
<title>Hands-On Interactive Neuro-Symbolic NLP with DRaiL</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="given">Leonor</namePart>
<namePart type="family">Pacheco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shamik</namePart>
<namePart type="family">Roy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Goldwasser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We recently introduced DRaiL, a declarative neural-symbolic modeling framework designed to support a wide variety of NLP scenarios. In this paper, we enhance DRaiL with an easy to use Python interface, equipped with methods to define, modify and augment DRaiL models interactively, as well as with methods to debug and visualize the predictions made. We demonstrate this interface with a challenging NLP task: predicting sentence and entity level moral sentiment in political tweets.</abstract>
<identifier type="citekey">pacheco-etal-2022-hands</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-demos.37</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-demos.37</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>371</start>
<end>378</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hands-On Interactive Neuro-Symbolic NLP with DRaiL
%A Pacheco, Maria Leonor
%A Roy, Shamik
%A Goldwasser, Dan
%Y Che, Wanxiang
%Y Shutova, Ekaterina
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F pacheco-etal-2022-hands
%X We recently introduced DRaiL, a declarative neural-symbolic modeling framework designed to support a wide variety of NLP scenarios. In this paper, we enhance DRaiL with an easy to use Python interface, equipped with methods to define, modify and augment DRaiL models interactively, as well as with methods to debug and visualize the predictions made. We demonstrate this interface with a challenging NLP task: predicting sentence and entity level moral sentiment in political tweets.
%R 10.18653/v1/2022.emnlp-demos.37
%U https://aclanthology.org/2022.emnlp-demos.37
%U https://doi.org/10.18653/v1/2022.emnlp-demos.37
%P 371-378
Markdown (Informal)
[Hands-On Interactive Neuro-Symbolic NLP with DRaiL](https://aclanthology.org/2022.emnlp-demos.37) (Pacheco et al., EMNLP 2022)
ACL
- Maria Leonor Pacheco, Shamik Roy, and Dan Goldwasser. 2022. Hands-On Interactive Neuro-Symbolic NLP with DRaiL. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 371–378, Abu Dhabi, UAE. Association for Computational Linguistics.