Snoopy: An Online Interface for Exploring the Effect of Pretraining Term Frequencies on Few-Shot LM Performance

Yasaman Razeghi∗♢ Raja Sekhar Reddy Mekala ♢ Matt Gardner♠ Sameer Singh♢♣
♢University of California, Irvine ♠Microsoft Semantic Machines ♣Allen Institute for AI
{yrazeghi,rmekala,rlogan,sameer}@uci.edu
mattgardner@microsoft.com

Abstract

Current evaluation schemes for large language models often fail to consider the impact of the overlap between pretraining corpus and test data on model performance statistics. Snoopy is an online interface that allows researchers to study this impact in few-shot learning settings. Our demo provides term frequency statistics for the Pile, which is an 800GB corpus, accompanied by the precomputed performance of EleutherAI/GPT models on more than 20 NLP benchmarks, including numerical, commonsense reasoning, natural language understanding, and question-answering tasks. Snoopy allows a user to interactively align specific terms in test instances with their frequency in the Pile, enabling exploratory analysis of how term frequency is related to the accuracy of the models, which are hard to discover through automated means. A user can look at correlations over various model sizes and numbers of in-context examples and visualize the result across multiple (potentially aggregated) datasets. Using Snoopy, we show that a researcher can quickly replicate prior analyses for numerical tasks, while simultaneously allowing for much more expansive exploration that was previously challenging. Snoopy is available at https://nlp.ics.uci.edu/snoopy.

1 Introduction

Large language models have achieved impressive few-shot performance on various NLP benchmarks with in-context learning (Black et al., 2022; Chowdhery et al., 2022; Brown et al., 2020). This improvement is primarily driven by increasing the scale of the models and the pretraining data (Bender et al., 2021; Kaplan et al., 2020). By leveraging diverse data sources such as GitHub and arXiv, these models have demonstrated the ability to perform complicated tasks such as quantitative reasoning (Lewkowycz et al., 2022) and writing computer programs (Chen et al., 2021).

However, the current evaluation schemes for these language models often underestimate the possibility of data leakage between the evaluation data and the pretraining data. Various studies have demonstrated the capacity of large language models to memorize the pretraining data (Carlini et al., 2021, 2022), as well as the impact of pretraining term frequency on reasoning performance (Razeghi et al., 2022). These observations highlight the importance of measuring the impact of pretraining data in evaluating large language models.

A critical barrier to performing research related to pretraining data statistics is the cost of analyzing the large corpus of pretraining data. Since the size of these corpora is usually large (e.g., Pile is 800GB), analyses involving the pretraining data can be time-consuming and expensive. Furthermore, evaluating large language models such as GPT-J-6B is also expensive—even inference queries require high-memory GPUs—which further impedes analysis of the capabilities and limitations of large language models.

To facilitate research in understanding the relationship between the pretraining corpus and model behavior, we introduce Snoopy, an online platform that assists researchers in studying the impact of pretraining term frequencies on language model performance on downstream tasks. Snoopy includes unigram and low-order co-occurrence statistics of terms in the Pile dataset (the pretraining data for all of the EleutherAI/GPT models). It uses these counts to show the correlation between the model’s few-shot performance on instances and the frequency of instance terms in the pretraining data (illustrated in Figure 1). Our web app supports this analysis on more than 20 NLP benchmarks (mostly from the lm-evaluation-harness (Gao et al., 2021b)) including, numerical and commonsense reasoning, natural language understanding, and question answering tasks. In addition, the user can highlight desired terms on the plots, explore individual in-
Figure 1: Using Snoopy to study the effect of term frequencies on GPT-J-6B’s 2-shot accuracy on multiplication. Each point represents a term (numbers in this case), with x-axis the frequency of the term in pretraining corpus and y-zaxis the average performance on the instances that include that term (for 2-shot multiplication using GPT-J-6B). Snoopy demonstrates a strong correlation between the accuracy of a number and its frequency in pretraining data. Users can select terms to highlight i.e. 11, 12, 24, 23 here.

In this section, we describe the architecture behind Snoopy (as illustrated in Figure 2) Snoopy precomputes term counts from pretraining data and instance-level performance statistics on evaluation datasets, and allows users to create performance vs. frequency plots dynamically. In the following, we describe each of these components.

2.1 Calculating the Term Frequencies
We process the Pile dataset (Gao et al., 2021a), which is among the few corpora for pretraining the language models that are publicly available. We first tokenize the corpus using the spaCy English tokenizer (Honnibal and Montani, 2017). Then, we count the number of times each token, i.e., term, appears in the pretraining corpus, which we call the term frequency. While counting the terms, we eliminate all the stop words and tokens with a count of less than 100 to reduce the memory usage. To calculate the co-occurrences of terms, we count the times every two terms appear in a window of 5 in the pretraining data. We use Amazon Elastic Map Reduce (EMR)¹ to process the pretraining data.

2.2 Instance-Level Model Accuracy
For a quick, interactive interface and a smooth user experience that facilitates exploration, we precompute the accuracy of the EleutherAI GPT models on each instance on several NLP benchmarks using the lm-evaluation-harness framework (Gao et al., 2021b). While our current version supports a subset of tasks and models from this framework, we will gradually expand this demo to include more tasks with instance-level performance metrics and all of the models trained on the Pile dataset.

2.3 Matching Terms to Evaluation Instances
With term frequencies and instance-level model accuracies computed, we next need to determine how terms are matched to evaluation instances. Snoopy supports two different approaches. For numerical reasoning tasks, we only use the numbers in each instance as the terms to study since the operand is fixed across all instances. For other natural language benchmarks, all non-stopwords extracted in Section 2.1 are used as terms by default. However, using a provided “custom” option, the user can also specify certain terms by uploading a CSV file containing all these desired terms.

2.4 Performance vs. Frequency Plots
To visually capture the relation between a term’s pretraining frequencies and model performance on instances associated with that term, we introduce Performance vs. Frequency plots (Figure 1). In these plots, the y-axis shows the average performance over all instances that includes that term while the x-axis shows the frequency of the term. An example of this plot for the multiplication task evaluated on GPT-J-6B on 2-shot settings is provided in Figure 1. In addition to plotting term-specific accuracies, we plot a curve that captures the aggregate effect of frequency on accuracy. This curve is generated by partitioning the instances into 10 quantiles based on term frequencies, taking the average accuracy over instances in the same quantile, and then connecting these averages using lines. For example, we average the accuracy over

¹https://aws.amazon.com/emr/
Figure 2: **Architecture for Snoopy.** We first process the pretraining corpus to compute term counts (and co-occurrences), and gather the evaluation results from the *lm-evaluation-harness* (Gao et al., 2021b) framework for models of interest. We combine these to generate performance vs. term frequency plots for various datasets.

all instances from the Commitment Band dataset that has the term *pay* for the y-axis and put the frequency of term *pay* on the x-axis as shown in Figure 2.

3 Snoopy Capabilities

As mentioned in Section 1, *Snoopy* supports a subset of tasks from *lm-evaluation-harness* benchmark (Gao et al., 2021b) in addition to all numerical reasoning tasks from Razeghi et al. (2022). It provides a simple and performant interface that allows researchers to compare results across various experimental settings with visualizations of the precomputed results in a user-friendly manner. The plots are generated using Plotly.js, which enables easy download, zoom in-and-out, and re-scaling of the plots. The following is a brief description of *Snoopy*’s functionalities on numerical reasoning and other language understanding tasks.

3.1 Numerical Reasoning Tasks

For numerical reasoning, the user can study and visualize all the tasks from Razeghi et al. (2022), i.e. arithmetic (addition and multiplication), conversion of time units, and operator inference. Users can specify the number of examples in the prompt (the number of shots: 2, 4, 8) and the size of the language model (choosing between GPT-Neo-1.3B, GPT-Neo-2.7B, and GPT-J-6B). Users can also select terms (numbers) to highlight on the plots.

3.2 NLP Benchmarks

Our tool also allows studying the impact of term frequencies on various commonsense reasoning tasks (COPA (Roemmele et al., 2011), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020)), natural language understanding tasks (CoLA (Warstadt et al., 2019), MNLI (Nangia et al., 2017), MRPC (Dolan and Brockett, 2005), QNLI (Wang et al., 2019b)), and question answering tasks (ARC (Clark et al., 2018), LogiQA (Liu et al., 2020), OpenbookQA (Mihaylov et al., 2018)). For this group of tasks, we provided the accuracy of GPT-J-6B models with 2, 4, and 8 number of shots. Example usage for GPT-J-6B 2-shot experiment on the Commitment Bank (Wang et al., 2019a) dataset

2https://plotly.com/javascript/
3.3 Term Highlighting

The user can also select terms to highlight and visualize on the plot. For example, in Figure 1 the location of specified terms (e.g., numbers 11, 12, 23, 24) is highlighted for numerical reasoning (multiplication) and in Figure 3, the terms (e.g., pay, man, going, she, he) are highlighted for Commitment Band dataset.

3.4 Multi Dataset Comparison

With multi dataset comparison, users can select multiple datasets to visualize their performance vs. frequency on the same plot. An example of this feature is provided in Figure 5 in which the user has specified the datasets of SST, TriviaQA, and WNLI. Using this option, the user can compare the ranges of frequency terms and performance, the overall impact of pretraining term frequencies on model performance, and the impact of individual terms across multiple tasks. For example, the terms “man”, “woman”, “he” and “she” are individually highlighted for all of these datasets (Figure 6).

3.5 Multi Dataset Aggregation

Multi dataset aggregation allows the user to study the aggregate performance of the model containing specific terms across all selected datasets. For instance, we may want to see if the model is more accurate on any instance (across datasets) that includes the word “he” compared to the word “she”. To answer this question, we can select all datasets from the dataset menu, select the terms “he” and “she” in the term input section, and see the difference in performance using the Multi Dataset Aggregation option. An example of this analysis is provided in the next section in which we provide a case study using Snoopy (Figure 7).

3.6 Plots for a Subset of Terms

Other than visualizing the accuracy vs. frequency plots on all terms for instances from a given dataset, we also support the capability to plot the correlation line for a certain subset of user-defined terms. This option further facilitates research in studying the effect of certain terms with various frequencies on the model’s performance. Using the option of “import CSV”, the user can upload a CSV file containing desired terms. Once the upload is completed, Snoopy visualizes the specific terms frequency plots. These plots illustrate the average performance on instances with the specific terms on the y-axis and the pertaining frequency of these terms on the x-axis.

4 Case Study

In this section, we present a case study of using Snoopy. Here, we want to study the effect of term-frequencies on GPT-J-6B model accuracy in 2-shot in-context learning setting. We are going to perform this study on three different datasets of sentiment analysis (SST), Question Answering (TriviaQA), and a reading comprehension task (WNLI).

Step 1: We want to investigate whether the GPT-J-6B model accuracy on instances is affected by the unigram term frequencies on the mentioned datasets. First, we need to specify the model, dataset, and the number of shots we want to focus on. For this case, we want to observe the impact of term frequencies on GPT-J-6B models with 2 shot on SST, TriviaQA, and WNLI tasks. We do this using the drop-down menus shown in Figure 4. Upon this selection, Snoopy generates the accuracy vs frequency plots for all these three datasets.

Step 2: Now, we want to observe if the model performance is different on instances with certain
Figure 6: Highlighting specific terms such as “he”, “she”, “man”, and “woman” on performance vs frequency plots (for multiple datasets).

Figure 7: Comparing the overall performance of GPT-J-6B model on instances from SST, TriviaQA, and WNLI datasets that include the terms “he” or “she”.

Figure 8:Example instances from the TriviaQA questions. The terms are color-coded based on their pretraining term frequency (red are frequent, blue are rare).

Figure 9: Performance vs co-occurrences of term frequency plots for SST, TriviaQA, and WNLI.

Terms of “he”, “she”, “man”, and “woman”. We use the “add terms” option to add these specific terms as shown in Figure 6; instances from the SST dataset containing the term “he” have much higher average performance than those with “she”, which is not the case for WNLI and TriviaQA datasets.

Step 3: In this step, we want to study the average accuracy of GPT-J-6B on instances containing these terms over all three datasets. By choosing the comparison option (presented in Figure 7), we see that GPT-J-6B model performance on instances that contain the term “he” in comparison to instances with the term “she” on the three datasets. We observe that the model has better performance on SST instances containing the term “he” in comparison to the instances with the term “she”. This is not the case for WNLI and triviaQA datasets.

Step 4: Figure 8 provide an example for Snoopy’s instance visualization feature. Using this feature, Snoopy provides a random selection of instances from each dataset. This option helps the user get familiar with instance queries from each dataset and observe the model performance on each instance. Moreover, the user can select the Highlight Frequent words option. This option color codes the terms on the instances based on their frequency in the pretraining dataset, as shown in Figure 8.

Step 5: Now we want to visualize the average performance of GPT-J-6B vs. the count of co-occurrences of terms on the x-axis as a measure of frequency for these three datasets. To do so, we select the option of co-occurrence instead of the unigram from the top bar as shown in Figure 9.

5 Related Work

Studying the Pretraining Data Dodge et al. (2021) have studied the pretraining data of large language models. They provide documentation for the C4 corpus which has been used as a part of pretraining datasets such as Pile (Gao et al., 2021a). Many
works have illustrated language model capabilities to memorize parts of the pretraining data (Carlini et al., 2021; McCoy et al., 2021). Recently, some works has measured the model’s memorization of pretraining data through controlled experiments on fact retrieval (Akyürek et al., 2022), classification tasks (Magar and Schwartz, 2022), and text generation (Carlini et al., 2022). All this research emphasizes the importance of studying the pretraining data statistics and considering the pretraining data in interpreting the model evaluation performances.

Evaluation Frameworks for LMs Since the emergence of large language models, many works have provided a unified and easy to use framework for evaluating them (Wolf et al., 2019; Gao et al., 2021b; Srivastava et al., 2022). Our demo, Snoopy, can augment these frameworks by associating pretraining data statistics to the evaluation scheme.

6 Conclusions

In this paper, we presented Snoopy, a tool that enables researchers to study the impact of pretraining term frequencies on a model’s few-shot performance without requiring expensive computing resources. We illustrated how Snoopy could be used to create performance vs. frequency plots, aggregate statistics over multiple datasets, and several other functionalities for further investigating pretraining data statistics. We hope that this tool makes it easier for researchers to study the effect of term frequencies on language model performance.

Acknowledgements

This material is sponsored in part by the DARPA MCS program under Contract No. N660011924033 with the United States Office Of Naval Research, by an Amazon Research Award, and by awards IIS-2046873 and IIS-204098 from the National Science Foundation.

References

Ekin Akyürek, Tolga Bolukbasi, Frederick Liu, Binbin Xiong, Ian Tenney, Jacob Andreas, and Kelvin Guu. 2022. Tracing knowledge in language models back to the training data. ArXiv preprint, abs/2205.11482.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. 2018. Think you have solved question answering? try arc, the ai2 reasoning challenge. ArXiv, abs/1803.05457.

