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Abstract

We present ALToolbox – an open-source frame-
work for active learning (AL) annotation in nat-
ural language processing. Currently, the frame-
work supports text classification, sequence tag-
ging, and seq2seq tasks. Besides state-of-the-
art query strategies, ALToolbox provides a set
of tools that help to reduce computational over-
head and duration of AL iterations and increase
annotated data reusability. The framework aims
to support data scientists and researchers by
providing an easy-to-deploy GUI annotation
tool directly in the Jupyter IDE and an exten-
sible benchmark for novel AL methods. We
prepare a small demonstration of ALToolbox
capabilities available online1,2. The code of the
framework is published under the MIT license3.

1 Introduction

The development of text processing applications
based on machine learning (ML) usually requires
a lot of labeled data. Despite numerous annotated
corpora designed for various tasks and available for
resource-rich languages, in practice, the business
logic of an application is often very specific and
cannot be implemented using only public resources.
Manual annotation of natural language corpora is a
tedious and time-consuming task, which can take
up to 30-40% of the application development time.

For rather simple tasks, the annotation of corpora
can be organized using crowd-sourcing. However,
crowd-sourcing is not suitable for specific domains
like medicine, finance, information technology, or
any other field that requires specific qualifications
or knowledge of business logic. It is also problem-
atic to apply crowd-sourcing when the annotation
scheme is complex and requires some premature

1http://demo.nlpresearch.group
2http://demo-video.nlpresearch.group
3https://github.com/AIRI-Institute/al_
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training of annotators. In each of the aforemen-
tioned cases, annotation of each instance becomes
expensive because it requires hiring people with a
high qualification or a specific skill set.

Active learning (AL) is a well-known technique
that speeds up data annotation by leveraging model
output for selecting instances demonstrated to hu-
man experts (Cohn et al., 1996; Settles and Craven,
2008). It focuses human effort on instances that are
the most informative for model training, decreas-
ing redundancy and filtering out noisy outliers. AL
helps to achieve a certain level of model perfor-
mance using only a fraction of the labor required
to exhaustively annotate a given dataset.

In this work, we present ALToolbox – an open-
source framework that contains a comprehensive
set of tools for practical AL annotation in text clas-
sification, sequence tagging, and seq2seq tasks.
The main goal of the framework is to support data
scientists and researchers. They usually need to test
new ideas very quickly, and the lack of annotation
is a common obstacle to this. ALToolbox aims to
address several practical obstacles to deploying AL:
(1) data annotated with AL should be reusable; (2)
AL should not consume excessive computational
resources, while the annotation process should be
interactive without delays for annotators; (3) anno-
tation should be quick and fluent.

(1) Instances selected with AL that are infor-
mative for one model can be not informative for
a different model of another type. This hurts the
reusability of data annotated with the help of AL.
For example, Lowell et al. (2019) shows that if
we use predictions of one model for selecting in-
stances during AL, but train a model of a different
type on the selected data, the performance of the lat-
ter can be even worse compared to the case when
it is trained on data labeled without AL. Lowell
et al. (2019) call this effect acquisition-successor
mismatch (ASM) problem (where acquisition is a

406

mailto:shelmanov@airi.net
mailto:artem.shelmanov@mbzuai.ac.ae
http://demo.nlpresearch.group
http://demo-video.nlpresearch.group
https://github.com/AIRI-Institute/al_toolbox
https://github.com/AIRI-Institute/al_toolbox


Feature Paladin ActiveAnno AlpacaTag FAMIE Small-Text ALToolbox (Ours)
Text classification ✓ ✓ ✓ ✓
Sequence tagging ✓ ✓ ✓
Seq2seq ✓
SOTA query strategies ✓ ✓ ✓
SOTA neural models ✓ ✓ ✓ ✓ ✓ ✓
Computationally efficient AL ✓ ✓
Annotated data reusability ✓
Annotation GUI ✓ ✓ ✓ ✓ ✓
Serverless annotation in Jupyter ✓
Extensible benchmark ✓
Multilinguality ✓ ✓ ✓
Compat. with other AL frameworks ✓ ✓
Acquisition model adaptation ✓
Proactive learning ✓

Table 1: Comparison of NLP-related AL frameworks.

model used for selecting instances during AL and
successor is a model trained on the labeled data
for the final application). To address this prob-
lem, we include in the framework several pipelines
for the preparation of acquisition models and post-
processing of data annotated with the help of AL.
These pipelines leverage the Pseudo-labeling for
the Acquisition-Successor Mismatch (PLASM) al-
gorithm based on the effect of knowledge distil-
lation (Hinton et al., 2015) in AL revealed by
Shelmanov et al. (2021); Tsvigun et al. (2022b).
PLASM effectively mitigates ASM, making data
collected with AL reusable for training models of
various architectures.

(2) Applying AL is not free. It introduces addi-
tional computational overhead which usually sums
up from training an acquisition model and per-
forming its inference. For resource-intensive mod-
els such as modern neural networks, this over-
head might be prohibitive due to the cost of GPU-
accelerated computations for their training and in-
ference. Due to the ASM problem, it is not possible
to simply replace a resource-intensive model (e.g.
ELECTRA) with a small one (e.g. DistilBERT).
PLASM addresses this problem and allows to use
small versions of acquisition models obtained using
distillation, which speeds up training and inference.
ALToolbox also implements an unlabeled pool sub-
sampling algorithm, which leverages uncertainty of
instances to avoid repetitive predictions on the part
of the unlabeled pool, speeding up the inference
phase of AL iterations (Tsvigun et al., 2022b).

(3) AL itself speeds up the annotation proce-
dure, but the time required for deploying an AL-
empowered annotation system and integrating an-
notation with existing data processing pipelines can
diminish its benefits. Removing obstacles between
the data processing workflow and annotation tools
can facilitate rapid evaluation of new ideas. There-
fore, in ALToolbox, besides a set of state-of-the-

art query strategies, we also provide a serverless
AL-empowered annotation tool that is natively inte-
grated directly into the Jupyter Notebook IDE. This
tool is suitable for labeling small datasets and test-
ing new ideas quickly, which, we believe, is useful
for data scientists and researchers. This tool is easy
to start and is fully integrated with the familiar IDE,
while also being flexible and extensible.

There are many UI-centric academic and com-
mercial annotation systems for end users that sup-
port AL annotation: WebAnno (Yimam et al.,
2013), AlpacaTag (Lin et al., 2019), Paladin
(Nghiem et al., 2021), ActiveAnno (Wiechmann
et al., 2021), FAMIE (Van Nguyen et al., 2022),
Prodigy (Montani and Honnibal, 2018) (a com-
mercial system), and others. However, they lack
many practical features that serve the goal of rapid
annotation, compatibility with pipelines for data
analysis and IDEs, and reusability of the annotated
data. There are also several low-level AL packages
that focus on providing various query strategies
and can be used as building blocks for more elabo-
rated systems: LibAct (Yang et al., 2017), ModAL
(Danka and Horvath, 2018), Baal (Atighehchian
et al., 2020), Small-text (Schröder et al., 2021).
However, most of them also overlook the problem
of reusability and computational efficiency. Only
Small-text is specifically tailored to NLP tasks.

The contributions of the proposed framework:

• a comprehensive collection of state-of-the-art
query strategies for sequence tagging, text
classification, and seq2seq tasks;

• a benchmarking tool for experimental evalua-
tion of novel AL methods;

• pipelines for acquisition model preparation
and for data post-processing that provide
reusability of annotated data and computa-
tional efficiency of AL;

• a serverless GUI for AL annotation integrated
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Method Paladin ActiveAnno AlpacaTag FAMIE Small-Text ALToolbox (ours)
AcTune (Yu et al., 2022) ✓
ALPS (Yuan et al., 2020) ✓ ✓
BADGE (Ash et al., 2020) ✓ ✓ ✓
BAIT (Ash et al., 2021) ✓
BALD (Houlsby et al., 2011) ✓
BatchBALD (Kirsch et al., 2019) ✓
BERT-KM (Yuan et al., 2020) ✓ ✓ ✓
BLEUVar (Xiao et al., 2020) ✓
Breaking Ties (Luo et al., 2004) ✓ ✓
CAL (Margatina et al., 2021) ✓ ✓
Cluster-Margin (Citovsky et al., 2021) ✓
Coreset (Sener and Savarese, 2018) ✓ ✓
Discriminative AL (Gissin and Shalev-Shwartz, 2019) ✓
EGL (Settles et al., 2007) ✓ ✓
ENSP (Wang et al., 2019) ✓
Entropy (Roy and Mccallum, 2001) ✓ ✓
IDDS (Tsvigun et al., 2022a) ✓
LC (Lewis and Gale, 1994) ✓ ✓ ✓ ✓
MNLP (Shen et al., 2017) ✓ ✓ ✓
NSP (Ueffing and Ney, 2007) ✓
SEALS (Coleman et al., 2022) ✓

Table 2: The comparison of AL frameworks by implemented query strategies.

directly into the Jupyter notebook IDE for data
scientists and researchers.

2 Framework Description

The ALToolbox framework is a Python library with
several executable scripts, as well as a Jupyter wid-
get implemented in JavaScript. In this section, we
describe the key features of the framework.

2.1 Query Strategies

One of the key components of AL pipelines is a
query strategy that specifies what instances are se-
lected for annotation. ALToolbox provides clas-
sical and state-of-the-art query strategies for text
classification, sequence tagging, and seq2seq tasks.
Table 2 summarizes strategies implemented in our
framework and in software packages from the re-
lated work.

Uncertainty sampling is one of the most widely-
used types of AL query strategies. ALTool-
box provides several basic uncertainty estimation
methods based on softmax prediction probability:
Least Confidence (LC) (Lewis and Gale, 1994),
Maximum Normalized Log-Probability (MNLP)
(Shen et al., 2017), Breaking Ties (BT) (Luo et al.,
2004), Prediction entropy (PE) (Roy and Mccal-
lum, 2001), Normalized Sequence Probability
(NSP) (Ueffing and Ney, 2007). Since a predictive
distribution of a single deterministic neural network
cannot be used to obtain reliable uncertainty scores
(Sener and Savarese, 2018; Mukhoti et al., 2021),
some works have ventured into the development
of Bayesian query strategies (Siddhant and Lipton,
2018). ALToolbox implements one of the widely-
adopted strategies – Bayesian Active Learning by
Disagreement (BALD) (Houlsby et al., 2011). It

selects instances that provide the biggest amount of
information about true model parameters by know-
ing the true label of the considered instance. In
practice, the strategy approximates variational in-
ference in a Bayesian neural network using Monte-
Carlo dropout (Gal and Ghahramani, 2016). AL-
Toolbox also includes a batched version of BALD –
BatchBALD (Kirsch et al., 2019), which is modi-
fied to jointly score and select for annotation multi-
ple instances on each AL iteration.

An alternative for uncertainty sampling is
diversity-based sampling. In this category, the core-
set algorithm (Sener and Savarese, 2018) leverages
data geometry and aims to minimize the bound
between an average loss over any given subset of
the dataset and the remaining data points. Recently
proposed Contrastive Active Learning (CAL) pri-
oritizes instances, which predictive likelihoods di-
verge the most from their neighbors in the training
set (Margatina et al., 2021). The Cluster-Margin
algorithm (Citovsky et al., 2021) is designed to
select large batches for annotation. It prioritizes
instances that are diverse and that the model is not
confident about. BERT-KM (Yuan et al., 2020)
clusters texts in the unlabeled pool using their
contextualized embeddings and selects the nearest
neighbors of cluster centers. Active Learning by
Processing Surprisal (ALPS) (Yuan et al., 2020)
leverages pre-trained models, self-supervised learn-
ing objective, and clustering to solve the cold-start
problem in AL. AcTune (Yu et al., 2022) can be
used as a wrapper over uncertainty-based query
strategies. It selects the most uncertain instances
from regions obtained by clustering the unlabeled
pool and ranking them by uncertainty and diversity.

ALToolbox also contains several gradient-based
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Figure 1: Serverless GUI annotation tool integrated into the Jupyter IDE.

query strategies. Expected Gradient Length
(EGL) aims to prioritize instances that would im-
part the greatest change to the current model if we
add them to the training set with their labels (Settles
et al., 2007). Batch Active Learning by Diverse
Gradient Embeddings (BADGE) measures un-
certainty as the gradient magnitude with respect to
parameters in the final (output) layer (Ash et al.,
2020). Batch Active learning via Information
maTrices (BAIT) selects batches of instances by
optimizing a bound on the MLE error in terms of
the Fisher information (Ash et al., 2021).

Furthermore, ALToolbox provides several query
strategies for seq2seq tasks. NSP (Ueffing and
Ney, 2007) is an analogue of LC for text genera-
tion, which calculates the length-normalized total
probability of a generated sequence. ENSP (Wang
et al., 2019) makes several stochastic runs using
Monte-Carlo dropout and averages the probabili-
ties of the sequences. The BLEUVar (Xiao et al.,
2020) algorithm strives to measure the variance of
texts generated under Monte-carlo dropout by us-
ing the BLEU metric (Papineni et al., 2002). The
IDDS (Tsvigun et al., 2022a) strategy, shown to
be state-of-the-art for the abstractive text summa-
rization task, selects instances that are semantically
dissimilar from the already annotated instances,
avoiding outliers and borderline instances.

Finally, the framework provides the ability to use
different strategies for different AL iterations. For
example, one could use a cold-start method (e.g.
ALPS) at several first iterations and later switch to
another strategy such as LC.

2.2 Supported Models
ALToolbox is compatible with the HuggingFace
Transformers library (Wolf et al., 2020), allowing
the usage of state-of-the-art Transformer models
like BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), XLNet (Yang et al., 2019), ELEC-
TRA (Clark et al., 2020), and others. The sup-
port of some older RNN-based models like CNN-
BiLSTM-CRF (Ma and Hovy, 2016) for sequence
tagging is implemented via a wrapper around the
Flair library (Akbik et al., 2019). Users can also im-
plement their own models directly using PyTorch.
ALToolbox provides several custom neural model
implementations in PyTorch, including the classi-
cal CNN for text classification (Le et al., 2018).

2.3 Jupyter Annotation Tool
ALToolbox provides a simple serverless tool with
a GUI for AL annotation integrated directly into
Jupyter Notebook, which is one of the most popu-
lar IDEs for the Python language and data analysis
(Figure 1). It supports annotation for text classifica-
tion and sequence tagging tasks like named entity
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AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Average

Actune + CAL 92.0 ± 0.5 94.3 ± 0.0 94.8 ± 0.2 95.0 ± 0.2 94.4 ± 0.0
Actune + Entropy 91.7 ± 0.5 94.1 ± 0.3 94.7 ± 0.4 94.8 ± 0.3 94.2 ± 0.2
Actune + LC 92.0 ± 0.3 94.2 ± 0.2 94.7 ± 0.4 95.0 ± 0.0 94.3 ± 0.3
ALPS 90.6 ± 0.3 92.3 ± 0.5 92.9 ± 0.5 93.4 ± 0.6 92.6 ± 0.2
BADGE 92.2 ± 0.3 94.3 ± 0.1 94.7 ± 0.2 95.0 ± 0.2 94.3 ± 0.1
BAIT 92.2 ± 0.4 94.3 ± 0.1 95.0 ± 0.2 95.1 ± 0.4 94.4 ± 0.1
BALD 92.2 ± 0.6 93.9 ± 0.1 94.8 ± 0.4 95.2 ± 0.1 94.3 ± 0.2
Breaking Ties (BT) 92.3 ± 0.3 94.5 ± 0.3 94.9 ± 0.1 95.0 ± 0.0 94.4 ± 0.1
CAL 92.3 ± 0.7 94.5 ± 0.3 94.8 ± 0.3 95.1 ± 0.1 94.4 ± 0.2
Coreset 91.9 ± 0.1 93.8 ± 0.3 94.7 ± 0.5 95.1 ± 0.1 94.2 ± 0.1
Entropy 92.0 ± 0.1 94.4 ± 0.1 94.9 ± 0.1 95.0 ± 0.2 94.4 ± 0.1
Least Confidence (LC) 92.3 ± 0.5 94.3 ± 0.3 95.0 ± 0.4 95.0 ± 0.2 94.4 ± 0.1
Mahalanobis Distance 91.6 ± 0.4 94.0 ± 0.3 94.8 ± 0.2 95.0 ± 0.1 94.2 ± 0.1
Random 90.8 ± 0.4 92.5 ± 0.1 92.9 ± 0.4 93.4 ± 0.5 92.6 ± 0.2

Table 3: Accuracy of RoBERTa on AG News with various AL strategies on several AL iterations with query
size = 1% (1200 instances). Average refers to the average result throughout the AL cycle. We select with bold
state-of-the-art results with respect to confidence intervals. The results are averaged for 5 runs with different seeds
to ensure the stability.

recognition and event extraction.
The tool is implemented using Jupyter widgets

– a built-in feature of the Jupyter IDE for creating
extensions. This widget can be configured with
various AL query strategies and models, including
Transformers. After the tool object is invoked, the
IDE displays the widget in a notebook cell, and
AL annotation begins. For example, to add NER
annotation, a user can select a corresponding text
fragment with a mouse and add a label to it. For
text classification, a label can be chosen from a
predefined list via selectable buttons. On each it-
eration, the user receives instances for annotation
in mini-batches. The user can annotate all or just a
part of them and invoke the next iteration of an AL
algorithm with the “Next iteration” button asking
for a new minibatch of unlabeled instances.

The annotation tool performs all necessary com-
putations asynchronously with GUI and returns
new instances without any delay. It keeps a list
of instances sorted by their “informativeness” and
updates it as soon as possible in the background.

The user can interrupt annotation at any time and
resume it after a while. The tool tracks changes
made by the user on the hard drive. The annotation
is accumulated in easy-to-parse JSON files.

The target audience of this tool is data scientists
and researchers. It is very easy to launch and mod-
ify: new graphical elements can be added using
Jupyter Widgets as well. Using Jupyter also helps
to reduce the effort of combining the system with
data processing pipelines. We consider this tool
might be useful for rapid annotation in small to
medium projects and for testing new ideas quickly.
However, we note that it lacks many useful features
of full-fledged annotation systems, e.g., the ability
to work with multiple users simultaneously. Cre-

ating a complex GUI for annotation is out of the
scope of this project since a wide range of similar
projects have already been released, e.g. DocAnno
(Nakayama et al., 2018), LabelStudio (Tkachenko
et al., 2020-2022), ActiveAnno (Wiechmann et al.,
2021). The ALToolbox framework can be easily
integrated into such annotation systems with the
help of API.

2.4 Tools for Computational Efficient Active
Learning and Reusable Annotation

ALToolbox contains a set of scripts that help to
improve the computational efficiency of AL while
keeping annotated data reusable. AL requires a
substantial amount of computations on each itera-
tion, which depends on the complexity and the size
of the acquisition model. Using smaller and lighter
models can lead to performance degradation of AL
due to the ASM problem discussed in the intro-
duction. We mitigate this problem by implement-
ing tools for the “Pseudo-Labeling for Acquisition-
Successor Mismatch” (PLASM) algorithm (Tsvi-
gun et al., 2022b). This algorithm leverages small
distilled models (e.g. DistilBERT) during the ac-
quisition of instances, but after the annotation is
finished it trains the original full-sized models (e.g.
BERT) on the acquired data and uses it for auto-
matic pseudo-labeling of the whole unlabeled pool
of instances. The mistakes in automatic annota-
tion are cleaned with the help of the TracIn method
(Pruthi et al., 2020). Finally, the successor model
is trained on the data that contains gold-standard
labels and cleaned automatically labeled instances.

PLASM reduces or completely removes the gap
in performance that appears when the successor
model is different from the acquisition model. It
makes the annotated data reusable for training suc-
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Figure 2: Duration in seconds of all the training and
inference phases of the simulated AL with different
acquisition settings on AG News with query size = 1%
and 15 AL iterations. ELECTRA is used as a successor
model, and DistilBERT – for acquisition in PLASM.

cessor models of various architectures. ALTool-
box provides scripts for automatic model distilla-
tion and a pipeline for data post-processing with
PLASM. All the necessary post-processing can be
done by invoking a single function.

For large datasets, making predictions for the
whole unlabeled set on each iteration to obtain the
uncertainty estimates may require an enormous
amount of time and resources. Consequently, in
the framework, we also implement the “unlabeled
pool subsampling” (UPS) algorithm (Tsvigun et al.,
2022b), which samples the instances from the unla-
beled pool according to their uncertainty estimates
on previous iterations.

Figures 2, 21, 23 illustrate time benefits brought
by PLASM and UPS on AG News, IMDB, and
CoNLL-2003, respectively. PLASM accelerates
the training phase of AL by 35% / 65% / 34%,
while UPS accelerates the inference phase by 65%
/ 61% / 63%. Their combination speeds up all AL
iteration computations by up to 63% / 67% / 38%,
respectively, making AL much more interactive.
Figures 19a, 20a, 22a show that the performance
of the successor model does not deteriorate when
these algorithms are used. Figures 19b, 20b, 22b,
in turn, show that the ASM problem leads to a
substantial decrease in the model performance.

We also provide scripts for domain adaptation of
acquisition models. Margatina et al. (2022) demon-
strate that self-supervised adaptation (Gururangan
et al., 2020) of pre-trained Transformers on the
unlabeled pool of instances helps to speed up AL.

2.5 Benchmarking Tool for Query Strategies
ALToolbox provides an extensible and easy-to-use
benchmarking tool for testing new AL query strate-

gies and unlabeled pool subsampling strategies. To
experiment with a new strategy, a user implements
it in the form of a Python class and runs the evalua-
tion script, specifying the path to the correspond-
ing class module as an argument. The script per-
forms several iterations of simulated AL annotation
and constructs the dependence of the model per-
formance scores on the size of the labeled data.
Experiments are launched multiple times with dif-
ferent random seeds to obtain confidence intervals
of the results.

Using this tool, we provide the evaluation re-
sults of implemented query strategies, which can
be used as a reference. The experiments with text
classification are conducted on AG News (Zhang
et al., 2015), IMDB (Maas et al., 2011), and
CoLA (Warstadt et al., 2018); with sequence tag-
ging – on CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003); with abstractive text sum-
marization – on AESLC (Zhang and Tetreault,
2019), WikiHow (Koupaee and Wang, 2018), and
PubMed (Cohan et al., 2018). We provide the re-
sults with big and lightweight Transformers and
with several different query sizes:

• Selecting k% of instances (for text classifica-
tion & abstractive text summarization) / to-
kens (for sequence tagging). In this setting,
we randomly select and annotate k% of in-
stances / tokens as the initial seed and select
k% of instances / tokens for annotation on
each AL iteration according to the query func-
tion. This configuration aims to benchmark
strategies in a high-resource AL mode. We
refer to it as query size = k%.

• Selecting 100 instances / tokens on each AL
iteration and as the initial seed. This con-
figuration aims to benchmark strategies in a
medium-resource AL mode. We refer to it as
query size = 100.

• Selecting 10 instances / tokens on each AL
iteration. The initial seeding procedure differs
between tasks under this mode. For text clas-
sification, we randomly select and annotate 1
instance of each class as the initial seed. For
other tasks, we annotate 10 randomly chosen
instances / tokens. This configuration aims
to benchmark strategies in a low-resource AL
mode. We refer to it as query size = 10.

Dataset statistics, model details, and hyperpa-
rameters are presented in Tables 4–6.
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Table 3 depicts the results on AG News with
RoBERTa-base as an acquisition model, and query
size = 1%. We can see that most of the strategies
perform roughly similar with CAL and LC showing
the best performance across all AL iterations. Fig-
ure 3 also demonstrates the results throughout the
whole AL cycle of the best-performing query strate-
gies according to the average accuracy throughout
the AL cycle. Figure 4 provides the comparison
of the duration of computations for various query
strategies. Tables 7–18 compare query strategies
on text classification datasets for various settings
and models. Figures 5–10 visualize the results of
the best-performing query strategies.

Sequence tagging results are presented in Tables
19–23. MNLP demonstrates the best quality in
terms of F1-micro score excluding the “no entity”
tag (“O”). Figures 11–13 show the iteration-wise
scores. The duration of computations for various
strategies is presented in Figure 23.

For abstractive text summarization, due to the
big size of the unlabeled pool of WikiHow and
Pubmed, on each AL iteration, we randomly sub-
sample the unlabeled pool to 10,000 instances. Ta-
bles 24–27 provide the average results throughout
the AL cycle and results on several iterations, while
Figures 15–18 illustrate the results during the entire
AL cycle. Finally, Figure 14 compares the duration
of execution of the seq2seq query strategies.

3 Related Work

The comparison of ALToolbox with other frame-
works from the related work on AL in NLP is pre-
sented in Table 1.

First of all, ALToolbox supports two most de-
manded NLP tasks: text classification and sequence
tagging. It also works with abstractive text sum-
marization, which is a seq2seq task. Other frame-
works support only one of the tasks: Paladin, Ac-
tiveAnno, and Small-Text work only with text clas-
sification, while AlpacaTag and FAMIE support
only sequence tagging.

Table 2 compares AL frameworks by imple-
mented query strategies. Paladin, ActiveAnno,
and AlpacaTag implement only the basic strate-
gies. FAMIE implements several modern methods
like ALPS and BADGE, but lacks many others. We
note that Small-Text implements many recently pro-
posed query strategies, including CAL, BADGE,
and BERT-KM. However, ALToolbox provides the
most comprehensive set of state-of-the-art query

strategies and also allows combining them.
Except for ALToolbox and FAMIE (Van Nguyen

et al., 2022), the computational overhead and the
AL-caused time delays have been inexplicably dis-
missed in the prior art. FAMIE entails training a
bigger model in the background during the labeling
of each batch while using a smaller one as a proxy
for acquisition. Such knowledge distillation makes
the AL annotation process more interactive but also
carries an additional computational burden, requir-
ing extra resources for training and running two
models. On the contrary, the knowledge distillation
within our framework reduces both the time needed
to complete an AL iteration and the overall amount
of computation.

We note that neither FAMIE, nor other frame-
works, address the ASM problem that hinders the
reusability of annotated data. The tools for model
distillation and annotated data post-processing
based on the PLASM algorithm in our framework
help to mitigate the ASM, so a user, for example,
can train XLNet using data acquired with Distil-
BERT without significant performance penalties.

Most of the considered systems provide an elab-
orated GUI for annotation by end-users. Our frame-
work aims to support data scientists and researchers
and provides a fast-to-deploy minimalistic annota-
tion system directly in the Jupyter IDE.

None of the considered systems provides easy-
to-use scripts for conducting experiments with new
AL methods. ALToolbox implements an extensi-
ble benchmarking tool that we hope will simplify
research in AL for NLP.

One of the problems that are currently out of
the scope of ALToolbox is efficient task assign-
ments to multiple annotators. Proactive learning
implemented in Paladin addresses this problem.
We consider this feature as future work.

4 Conclusion

We introduced ALToolbox, an open-source frame-
work for practical AL in NLP. Besides many other
features, the framework addresses the problems of
computational efficiency of AL and data reusabil-
ity. We hope that our framework will foster the
development of new AL methods and remove some
practical obstacles to deploying AL annotation.

In future work, we are looking forward to adding
the support of more text generation tasks, intro-
ducing proactive learning, and providing tools for
hyperparameter selection in AL.
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A Dataset Statistics and Model Hyperparameters

Dataset Train Test Mean document length (tokens) C
CoNLL-2003 15K/203.6K 3.7K/46.4K 14.5 4(5)
AG News 120K 7.6K 53.1 4
IMDb 25K 25K 300.0 2
CoLA 8.5K 1K 11.3 2
AESLC 14.4K 1.9K 142.4 -
WikiHow 184.6K 1K 377.5 -
Pubmed 119.1K 6.7K 495.4 -

Table 4: Dataset statistics. We provide a number of instances / tokens (for sequence tagging) for the training and
test sets and average lengths of documents in terms of tokens. C is a number of classes / entity types for text
classification and sequence tagging datasets.

Task Model Checkpoint # Param.

Text classification

BERT bert-base-uncased 110M
DistilBERT distilbert-base-uncased 67M
ELECTRA google/electra-base-discriminator 110M

DistilELECTRA lsanochkin/distilelectra-base 67M
RoBERTa roberta-base 125M

DistilRoBERTa distilroberta-base 82M

Sequence tagging
ELECTRA google/electra-base-discriminator 110M

BERT bert-base-cased 110M
DistilBERT distilbert-base-cased 67M

Abstractive text summarization BART facebook/bart-base 139M
PEGASUS google/pegasus-large 570M

Table 5: Transformers model checkpoints from the HuggingFace repository (Wolf et al., 2020)

Hparam Sequence tagging Classification BART PEGASUS
Number of epochs 15 5 6 4
Batch size 16 16 16 2
Gradient accumulation steps 1 1 1 8
Min. number of training steps 1000 1000 350 200
Max. sequence length - 256 1024 1024
Optimizer AdamW
Learning rate 5e-5 2e-5 2e-5 5e-4
Weight decay 0.01 0.01 0.028 0.03
Gradient clipping 1. 1. 0.28 0.3
Sheduler STLR
% warm-up steps 10
Num. beams at evaluation - - 4 4
Generation max. length - - Adapt. Adapt.

Table 6: Hyperparameter values of Transformers. The hyperparameters are chosen according to evaluation scores
on the validation datasets when models are trained using the whole available training data. Adapt refers to adaptive
length, when generation maximum length is equal to the maximum summary length on the train set.
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B Query Strategy Benchmark

For the tables in this section, we select with bold state-of-the-art results with respect to the confidence
intervals. When all the values are within the confidence interval, we only select with bold the largest
average value. The results are averaged for 10 runs with different seeds for query size = 10 and for 5
runs for other query size settings to ensure stability. The Average column refers to the average result
throughout the AL cycle.

B.1 Text Classification
B.1.1 AG News
Query size = 1 %
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Figure 3: Accuracy of the best performing query strategies according to average accuracy throughout the AL cycle
(BT, CAL, and LC) on AG News with RoBERTa with query size = 1%.
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Figure 4: Average duration in seconds of one AL query with different strategies on AG News with RoBERTa as an
acquisition model and query size = 1% (1200 instances). Hardware configuration is provided in Appendix C.
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Figure 5: Accuracy of the best performing query strategies with different acquisition models on AG News with
query size = 100.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Average

BADGE 88.95 ± 0.85 90.95 ± 0.18 91.83 ± 0.2 92.49 ± 0.27 93.06 ± 0.25 91.7 ± 0.16
BAIT 88.21 ± 1.36 90.56 ± 0.28 91.57 ± 0.28 92.23 ± 0.31 92.87 ± 0.15 91.32 ± 0.36
BALD 88.24 ± 1.04 90.0 ± 0.74 90.98 ± 0.29 91.26 ± 0.46 91.98 ± 0.32 90.69 ± 0.39
BT 88.96 ± 0.48 90.9 ± 0.25 92.01 ± 0.26 92.53 ± 0.28 93.11 ± 0.29 91.66 ± 0.06
CAL 88.08 ± 0.93 90.67 ± 0.15 91.73 ± 0.31 92.42 ± 0.17 92.91 ± 0.23 91.48 ± 0.16
Coreset 87.97 ± 1.26 90.32 ± 0.42 91.33 ± 0.24 91.72 ± 0.17 92.23 ± 0.32 90.97 ± 0.26
Entropy 88.02 ± 1.14 90.65 ± 0.35 91.24 ± 0.38 91.95 ± 0.42 92.58 ± 0.3 91.15 ± 0.27
LC 88.06 ± 1.33 90.91 ± 0.23 91.99 ± 0.2 92.55 ± 0.15 93.14 ± 0.28 91.65 ± 0.15
Random 87.35 ± 0.66 89.33 ± 0.31 89.8 ± 0.46 90.26 ± 0.28 90.77 ± 0.45 89.68 ± 0.27

Table 7: Accuracy of RoBERTa on AG News with various AL strategies with query size = 100.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Average

BALD 86.57 ± 0.26 89.06 ± 0.49 90.17 ± 0.21 90.57 ± 0.17 90.99 ± 0.29 89.82 ± 0.23
BT 87.71 ± 0.8 89.84 ± 0.22 90.81 ± 0.15 91.36 ± 0.19 91.67 ± 0.26 90.52 ± 0.12
CAL 87.37 ± 0.34 89.43 ± 0.37 90.37 ± 0.34 91.11 ± 0.22 91.59 ± 0.26 90.2 ± 0.2
Coreset 86.84 ± 0.59 89.31 ± 0.34 89.96 ± 0.23 90.51 ± 0.36 91.1 ± 0.21 89.81 ± 0.28
Entropy 86.27 ± 0.57 89.15 ± 0.63 90.05 ± 0.28 90.65 ± 0.55 91.19 ± 0.23 89.81 ± 0.37
LC 87.15 ± 0.67 89.3 ± 0.76 90.39 ± 0.3 91.13 ± 0.33 91.83 ± 0.34 90.19 ± 0.31
Random 86.17 ± 1.48 88.48 ± 0.39 89.19 ± 0.48 89.52 ± 0.43 89.81 ± 0.23 88.83 ± 0.4

Table 8: Accuracy of DistilBERT on AG News with various AL strategies with query size = 100.
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Query size = 10
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Figure 6: Accuracy of the best performing query strategies with different acquisition models on AG News with
query size = 10.

AL Strat. Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Iter. 25 Iter. 30 Average

BADGE 68.47 ± 7.84 85.13 ± 1.43 88.2 ± 0.58 88.68 ± 0.62 89.38 ± 0.25 89.86 ± 0.24 89.8 ± 0.18 87.3 ± 1.59
BALD 60.0 ± 6.97 79.58 ± 3.13 84.34 ± 1.4 85.64 ± 1.63 86.48 ± 1.1 87.37 ± 1.18 87.61 ± 1.13 83.77 ± 1.23
BT 67.98 ± 5.91 85.64 ± 1.31 88.56 ± 0.32 89.13 ± 0.32 89.39 ± 0.41 89.83 ± 0.36 90.1 ± 0.26 87.66 ± 0.51
CAL 58.04 ± 6.22 68.89 ± 7.78 86.33 ± 2.47 87.43 ± 1.47 88.58 ± 0.84 88.81 ± 0.57 89.38 ± 0.37 83.23 ± 1.77
Coreset 73.21 ± 3.27 85.49 ± 1.82 87.93 ± 0.63 88.94 ± 0.36 89.29 ± 0.31 89.77 ± 0.46 89.69 ± 0.43 87.44 ± 0.8
Entropy 60.64 ± 8.75 82.29 ± 1.72 86.45 ± 0.5 87.33 ± 0.8 88.45 ± 0.6 89.25 ± 0.49 89.32 ± 0.61 85.57 ± 0.83
LC 61.86 ± 8.49 85.36 ± 0.88 87.38 ± 0.51 88.47 ± 0.59 88.99 ± 0.38 89.35 ± 0.27 89.65 ± 0.23 86.6 ± 0.25
Random 68.33 ± 3.88 84.41 ± 1.52 85.95 ± 0.94 87.05 ± 0.92 87.68 ± 0.57 88.09 ± 0.39 88.47 ± 0.47 85.73 ± 0.69

Table 9: Accuracy of RoBERTa on AG News with various AL strategies with query size = 10.

AL Strat. Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Iter. 25 Iter. 30 Average

BT 67.95 ± 5.39 84.27 ± 0.3 87.2 ± 0.66 87.9 ± 0.51 88.59 ± 0.39 88.91 ± 0.19 89.19 ± 0.26 86.48 ± 0.31
CAL 58.87 ± 6.36 70.09 ± 4.32 82.72 ± 2.05 85.72 ± 1.17 87.29 ± 0.67 87.68 ± 0.78 88.31 ± 0.48 81.84 ± 1.64
Coreset 67.07 ± 5.52 81.52 ± 2.31 84.74 ± 1.37 86.91 ± 0.87 87.72 ± 0.49 88.17 ± 0.34 88.61 ± 0.24 85.0 ± 0.84
Entropy 56.19 ± 9.83 80.54 ± 2.05 84.65 ± 1.15 85.97 ± 0.89 86.48 ± 1.12 87.21 ± 0.55 87.5 ± 0.61 83.47 ± 0.89
LC 54.96 ± 4.34 82.28 ± 1.18 85.33 ± 0.9 86.99 ± 0.75 87.86 ± 0.39 88.38 ± 0.24 88.57 ± 0.38 84.76 ± 0.49
Random 65.56 ± 5.91 82.14 ± 2.01 84.87 ± 0.69 86.29 ± 0.58 86.77 ± 0.43 87.11 ± 0.44 87.37 ± 0.42 84.46 ± 0.91

Table 10: Accuracy of DistilBERT on AG News with various AL strategies with query size = 10.
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B.1.2 IMDB
Query size = 100
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Figure 7: Accuracy of the best performing query strategies with different acquisition models on IMDB with query
size = 100.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Average

BADGE 89.66 ± 1.17 91.91 ± 0.31 92.32 ± 0.59 92.69 ± 0.4 93.22 ± 0.17 92.35 ± 0.05
BALD 90.31 ± 0.32 91.89 ± 0.17 92.65 ± 0.13 92.95 ± 0.14 93.01 ± 0.16 92.39 ± 0.08
CAL 90.24 ± 1.27 92.14 ± 0.22 92.64 ± 0.14 92.92 ± 0.26 93.1 ± 0.28 92.32 ± 0.12
Coreset 89.16 ± 1.37 91.9 ± 0.3 92.63 ± 0.32 92.64 ± 1.35 92.79 ± 0.67 92.28 ± 0.25
LC / BT / Entropy 90.38 ± 0.46 92.3 ± 0.19 92.69 ± 0.21 93.08 ± 0.13 93.14 ± 0.26 92.49 ± 0.09
Random 89.77 ± 0.98 90.77 ± 0.58 91.46 ± 0.26 91.67 ± 0.4 92.04 ± 0.26 91.19 ± 0.36

Table 11: Accuracy of RoBERTa on IMDB with various AL strategies with query size = 100.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Average

BADGE 84.32 ± 0.42 86.92 ± 0.71 87.97 ± 0.29 88.81 ± 1.13 89.34 ± 0.42 87.82 ± 0.36
BALD 84.82 ± 0.6 87.2 ± 0.32 88.67 ± 0.2 88.79 ± 0.51 89.35 ± 0.14 88.09 ± 0.13
CAL 84.13 ± 1.28 86.72 ± 0.55 88.29 ± 0.38 88.93 ± 0.32 88.86 ± 0.76 87.67 ± 0.46
Coreset 84.1 ± 0.52 86.38 ± 0.89 87.63 ± 0.5 88.47 ± 0.42 89.1 ± 0.31 87.46 ± 0.33
LC / BT / Entropy 83.92 ± 1.38 86.47 ± 1.16 88.41 ± 0.54 89.19 ± 0.32 89.29 ± 0.18 87.74 ± 0.35
Random 82.81 ± 3.7 85.77 ± 0.61 86.84 ± 0.51 87.45 ± 0.33 88.06 ± 0.49 86.56 ± 0.5

Table 12: Accuracy of DisitlBERT on IMDB with various AL strategies with query size = 100.
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Figure 8: Accuracy of the best performing query strategies with different acquisition models on IMDB with query
size = 10.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Iter. 25 Iter. 30 Average

BADGE 69.49 ± 6.4 87.29 ± 1.35 89.16 ± 0.69 90.36 ± 0.45 90.46 ± 0.63 90.98 ± 0.28 91.13 ± 0.32 88.54 ± 0.53
BALD 67.08 ± 4.56 84.04 ± 2.66 88.09 ± 1.61 89.49 ± 0.76 90.56 ± 0.3 87.85 ± 5.56 90.81 ± 0.64 87.64 ± 0.66
CAL 60.22 ± 4.41 83.73 ± 4.75 89.33 ± 0.54 90.23 ± 0.26 90.77 ± 0.32 91.19 ± 0.32 91.4 ± 0.26 86.81 ± 0.83
Coreset 64.3 ± 6.06 86.92 ± 1.1 88.49 ± 1.44 89.36 ± 0.79 90.5 ± 0.32 90.77 ± 0.25 90.72 ± 0.26 87.27 ± 1.0
LC / BT / Entropy 60.26 ± 4.86 87.0 ± 0.87 89.08 ± 1.07 90.34 ± 0.34 90.35 ± 0.79 90.9 ± 0.49 91.3 ± 0.33 88.24 ± 0.46
Random 68.14 ± 5.58 86.6 ± 1.32 88.53 ± 1.09 89.3 ± 0.49 89.65 ± 0.51 89.79 ± 0.81 90.01 ± 0.53 87.55 ± 0.67

Table 13: Accuracy of RoBERTa on IMDB with various AL strategies with query size = 10.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Iter. 25 Iter. 30 Average

BADGE 56.53 ± 2.66 75.41 ± 2.65 81.96 ± 1.26 83.25 ± 1.5 83.95 ± 1.0 84.76 ± 0.79 85.19 ± 0.93 80.31 ± 1.21
BALD 55.61 ± 3.27 69.51 ± 5.22 79.44 ± 3.64 83.21 ± 1.15 83.86 ± 1.34 83.08 ± 3.52 85.14 ± 1.36 78.86 ± 3.86
CAL 55.67 ± 2.69 68.58 ± 4.09 80.85 ± 1.48 83.04 ± 1.15 84.3 ± 0.78 84.98 ± 0.47 85.26 ± 0.91 78.9 ± 0.81
Coreset 54.6 ± 3.48 69.77 ± 6.89 81.33 ± 0.96 82.65 ± 1.35 83.76 ± 0.83 84.2 ± 0.64 84.7 ± 0.55 79.04 ± 1.83
LC / BT / Entropy 55.31 ± 2.62 70.53 ± 4.88 80.23 ± 2.3 83.0 ± 1.73 84.18 ± 1.11 84.21 ± 1.95 85.22 ± 0.72 79.22 ± 1.68
Random 55.45 ± 2.78 70.41 ± 5.61 80.01 ± 2.64 83.24 ± 1.6 84.61 ± 0.48 84.63 ± 0.68 85.21 ± 0.67 79.45 ± 1.51

Table 14: Accuracy of DistilBERT on IMDB with various AL strategies with query size = 10.
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B.1.3 CoLA
Query size = 100
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Figure 9: Accuracy of the best performing query strategies with different acquisition models on CoLA with query
size = 100.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Average

BADGE 80.59 ± 1.13 82.61 ± 0.8 83.78 ± 0.29 85.22 ± 0.8 85.27 ± 0.6 83.76 ± 0.24
BALD 67.44 ± 5.74 77.34 ± 1.1 78.81 ± 0.53 79.67 ± 0.54 80.56 ± 0.4 77.73 ± 1.15
CAL 80.38 ± 1.34 82.28 ± 1.27 84.12 ± 0.72 84.95 ± 0.76 85.41 ± 1.01 83.73 ± 0.58
Coreset 80.31 ± 1.14 82.32 ± 1.1 84.33 ± 0.69 84.51 ± 0.62 85.16 ± 0.32 83.57 ± 0.62
LC / BT / Entropy 80.97 ± 1.07 83.32 ± 0.49 85.04 ± 0.78 85.38 ± 0.52 86.03 ± 0.3 84.11 ± 0.24
Random 79.94 ± 0.3 81.33 ± 0.6 82.41 ± 0.83 83.53 ± 1.0 84.54 ± 0.64 82.58 ± 0.38

Table 15: Accuracy of ELECTRA on CoLA with various AL strategies with query size = 100.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Average

BADGE 71.74 ± 2.1 75.19 ± 1.44 76.97 ± 0.76 78.09 ± 1.38 78.78 ± 1.17 76.58 ± 1.89
BALD 59.12 ± 6.86 63.99 ± 5.21 69.3 ± 2.97 71.27 ± 1.44 72.11 ± 1.42 67.93 ± 2.05
CAL 71.58 ± 1.34 75.05 ± 1.08 76.8 ± 0.77 77.83 ± 0.53 79.1 ± 0.87 76.58 ± 0.46
Coreset 70.51 ± 3.42 75.23 ± 1.01 76.82 ± 0.86 77.89 ± 0.88 79.39 ± 0.81 76.61 ± 0.31
LC / BT / Entropy 72.12 ± 0.94 75.36 ± 0.95 77.28 ± 0.61 78.31 ± 0.51 79.1 ± 0.82 76.71 ± 0.29
Random 70.35 ± 2.44 74.06 ± 1.08 74.96 ± 1.34 76.28 ± 1.69 76.41 ± 1.49 74.8 ± 0.91

Table 16: Accuracy of DistilBERT on CoLA with various AL strategies with query size = 100.
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Query size = 10

50 100 150 200 250
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

BADGE
LC / BT / Entropy
Random

Num. labeled instances

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

a) ELECTRA

50 100 150 200 250
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Coreset
LC / BT / Entropy
Random

Num. labeled instances

P
er

fo
rm

an
ce

, A
cc

ur
ac

y

b) DistilBERT

Figure 10: Accuracy of the best performing query strategies with different acquisition models on CoLA with query
size = 10.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Iter. 25 Iter. 30 Average

BADGE 64.25 ± 6.58 77.2 ± 1.63 79.41 ± 0.56 80.44 ± 0.61 81.01 ± 0.81 81.15 ± 0.53 81.65 ± 0.6 79.16 ± 1.18
BALD 67.41 ± 5.06 76.7 ± 1.85 78.68 ± 0.52 79.54 ± 0.59 80.62 ± 0.47 80.7 ± 2.03 81.35 ± 0.93 78.76 ± 8.01
CAL 65.88 ± 8.86 76.59 ± 2.68 79.7 ± 1.05 80.72 ± 0.43 80.73 ± 0.67 81.5 ± 0.49 80.88 ± 1.33 79.05 ± 0.97
Coreset 62.89 ± 9.54 74.61 ± 3.22 79.61 ± 0.58 79.99 ± 0.96 80.57 ± 0.54 80.89 ± 0.79 81.28 ± 0.63 78.42 ± 0.82
LC / BT / Entropy 66.27 ± 4.05 76.71 ± 0.79 79.61 ± 0.9 80.5 ± 0.59 80.59 ± 0.42 79.6 ± 3.68 81.56 ± 0.57 79.16 ± 0.43
Random 64.11 ± 8.0 76.39 ± 1.91 78.83 ± 0.79 79.6 ± 0.69 79.95 ± 0.81 79.97 ± 0.67 80.79 ± 0.83 78.36 ± 0.6

Table 17: Accuracy of ELECTRA on CoLA with various AL strategies with query size = 10.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Iter. 25 Iter. 30 Average

BADGE 63.66 ± 4.45 67.17 ± 2.53 69.64 ± 1.61 71.74 ± 1.63 72.69 ± 1.06 73.08 ± 0.64 73.68 ± 0.53 70.63 ± 1.28
BALD 59.39 ± 7.76 64.93 ± 2.71 68.4 ± 2.55 70.32 ± 1.18 71.2 ± 1.19 72.24 ± 1.05 73.2 ± 0.92 69.23 ± 1.05
CAL 60.2 ± 7.09 69.11 ± 1.3 71.02 ± 1.27 71.82 ± 1.32 72.3 ± 1.37 72.86 ± 1.06 73.64 ± 0.79 70.81 ± 0.86
Coreset 63.23 ± 6.22 69.91 ± 1.63 71.29 ± 1.16 72.13 ± 1.03 72.99 ± 0.67 73.43 ± 0.54 73.92 ± 0.61 71.68 ± 0.67
LC / BT / Entropy 61.19 ± 6.3 67.33 ± 2.37 70.04 ± 1.59 71.4 ± 0.92 71.77 ± 0.86 72.49 ± 0.99 73.01 ± 0.85 70.23 ± 1.22
Random 56.86 ± 7.72 64.13 ± 2.11 67.72 ± 1.98 69.96 ± 1.77 71.19 ± 0.96 72.08 ± 0.63 71.8 ± 1.34 68.53 ± 1.02

Table 18: Accuracy of DistilBERT on CoLA with various AL strategies with query size = 10.
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B.2 Sequence Tagging
B.2.1 CoNLL-2003
Query size = 2% (tokens)
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Figure 11: Overall F1-micro score of the best performing query strategies with ELECTRA on CoNLL-2003 with
query size = 2% (tokens).

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Average

BALD 87.46 ± 0.75 90.47 ± 0.28 91.09 ± 0.18 91.52 ± 0.2 90.5 ± 0.14
MNLP 88.23 ± 0.31 90.55 ± 0.24 91.17 ± 0.27 91.51 ± 0.14 90.75 ± 0.07
Random 87.23 ± 0.47 89.43 ± 0.56 90.47 ± 0.57 90.78 ± 0.21 89.72 ± 0.2

Table 19: Overall F1-micro score of ELECTRA on CoNLL-2003 with various AL strategies with query size = 2%
(tokens).
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Query size = 100 (tokens)
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Figure 12: Overall F1-micro score of the best performing query strategies with different acquisition models on
CoNLL-2003 with query size = 100.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Average

BALD 57.52 ± 14.08 67.65 ± 7.13 76.44 ± 2.76 80.27 ± 5.72 71.4 ± 2.21
MNLP 61.32 ± 10.1 76.36 ± 3.65 81.87 ± 3.44 84.16 ± 0.61 77.84 ± 2.59
Random 60.35 ± 6.36 72.22 ± 2.52 78.99 ± 1.98 81.16 ± 1.07 75.16 ± 1.57

Table 20: Overall F1-micro score of ELECTRA on CoNLL-2003 with various AL strategies with query size = 100
(tokens).

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Average

BALD 37.21 ± 6.39 47.6 ± 7.48 59.34 ± 7.41 65.86 ± 4.07 52.88 ± 9.22
MNLP 44.73 ± 5.0 62.96 ± 4.71 69.88 ± 2.53 74.2 ± 2.0 65.27 ± 1.64
Random 37.53 ± 4.21 56.22 ± 2.09 63.39 ± 2.57 67.76 ± 2.29 58.51 ± 1.81

Table 21: Overall F1-micro score of DistilBERT on CoNLL-2003 with various AL strategies with query size = 100
(tokens).
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Query size = 10 (tokens)
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Figure 13: Overall F1-micro score of the best performing query strategies with different acquisition models on
CoNLL-2003 with query size = 10.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Iter. 25 Iter. 30 Average

BALD 18.34 ± 7.99 35.53 ± 8.32 45.57 ± 11.36 50.33 ± 10.24 57.12 ± 7.12 57.93 ± 3.54 63.94 ± 6.42 49.02 ± 15.28
MNLP 22.28 ± 10.34 42.1 ± 7.49 58.07 ± 4.37 63.99 ± 3.77 70.33 ± 2.17 73.03 ± 2.58 74.95 ± 1.86 60.41 ± 3.31
Random 24.43 ± 7.2 39.82 ± 6.3 52.22 ± 7.31 59.54 ± 5.19 65.74 ± 4.47 69.36 ± 2.52 71.74 ± 2.75 56.11 ± 3.99

Table 22: Overall F1-micro score of ELECTRA on CoNLL-2003 with various AL strategies with query size = 10
(tokens).

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Iter. 20 Iter. 25 Iter. 30 Average

BALD 12.85 ± 6.45 20.7 ± 5.03 29.23 ± 6.59 34.78 ± 8.26 39.33 ± 9.11 43.39 ± 6.78 46.76 ± 6.07 33.43 ± 6.15
MNLP 19.46 ± 3.38 31.2 ± 3.85 42.4 ± 3.0 50.63 ± 2.33 54.17 ± 3.1 58.52 ± 2.82 58.85 ± 2.0 46.42 ± 2.31
Random 15.43 ± 5.45 25.82 ± 5.65 33.39 ± 6.04 39.3 ± 5.16 43.86 ± 5.6 49.55 ± 4.51 53.45 ± 3.49 38.0 ± 4.56

Table 23: Overall F1-micro score of DistilBERT on CoNLL-2003 with various AL strategies with query size = 10
(tokens).
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B.3 Abstractive Text Summarization
B.3.1 AESLC
Query size = 10
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Figure 14: Average duration in seconds of one AL query with different strategies on AESLC with BART as an
acquisition model and query size = 10. Hardware configuration is provided in Appendix C.
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Figure 15: ROUGE scores of the best performing query strategies with BART as an acquisition model on AESLC
with query size = 10.
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Figure 16: ROUGE scores of the best performing query strategies with PEGASUS as an acquisition model on
AESLC with query size = 10.
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AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Average

ROUGE-1
SacreBLEUVar 18.77 ± 2.21 23.46 ± 1.18 26.25 ± 0.69 27.53 ± 0.45 24.6 ± 0.96
IDDS 19.76 ± 0.82 27.3 ± 0.41 27.44 ± 0.3 28.7 ± 0.32 26.67 ± 0.08
Random 18.07 ± 2.26 24.0 ± 1.55 25.9 ± 0.88 27.47 ± 0.45 24.65 ± 0.94
NSP 17.09 ± 2.25 22.15 ± 2.16 24.88 ± 0.94 26.56 ± 0.46 23.22 ± 0.97
ENSP 14.57 ± 2.92 23.2 ± 1.16 25.41 ± 0.79 27.42 ± 0.92 23.74 ± 1.24

ROUGE-2
SacreBLEUVar 9.0 ± 1.12 11.26 ± 0.89 12.86 ± 0.62 13.59 ± 0.56 12.05 ± 0.71
IDDS 10.69 ± 0.53 15.2 ± 0.34 14.89 ± 0.29 15.26 ± 0.26 14.51 ± 0.07
Random 8.73 ± 1.24 11.69 ± 0.93 12.6 ± 0.49 13.72 ± 0.43 12.08 ± 0.63
NSP 7.92 ± 1.35 10.86 ± 1.34 12.03 ± 0.59 12.79 ± 0.26 11.15 ± 0.66
ENSP 6.69 ± 1.51 11.37 ± 0.67 12.36 ± 0.46 13.5 ± 0.58 11.52 ± 0.66

ROUGE-L
SacreBLEUVar 18.51 ± 2.19 22.93 ± 1.17 25.64 ± 0.73 26.91 ± 0.51 24.08 ± 0.99
IDDS 19.52 ± 0.81 26.73 ± 0.39 26.78 ± 0.29 27.92 ± 0.31 26.1 ± 0.08
Random 17.79 ± 2.21 23.48 ± 1.53 25.22 ± 0.84 26.81 ± 0.44 24.07 ± 0.92
NSP 16.88 ± 2.21 21.81 ± 2.13 24.39 ± 0.9 26.05 ± 0.38 22.81 ± 0.95
ENSP 14.41 ± 2.89 22.76 ± 1.12 24.93 ± 0.75 26.85 ± 0.92 23.3 ± 1.2

Table 24: ROUGE scores of BART on AESLC with various AL strategies with query size = 10.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Average

ROUGE-1
SacreBLEUVar 15.5 ± 1.59 25.11 ± 1.05 26.47 ± 1.19 28.02 ± 0.83 25.13 ± 0.58
IDDS 17.19 ± 1.58 28.23 ± 0.61 28.02 ± 0.42 29.18 ± 0.45 27.42 ± 0.15
Random 13.65 ± 3.34 26.42 ± 1.05 27.57 ± 0.7 27.86 ± 0.71 25.49 ± 0.8
NSP 13.12 ± 3.11 21.68 ± 3.79 25.05 ± 1.28 26.72 ± 1.02 23.03 ± 0.89
ENSP 12.39 ± 2.14 22.27 ± 2.13 23.37 ± 4.21 26.87 ± 0.55 23.36 ± 1.18

ROUGE-2
SacreBLEUVar 7.01 ± 0.86 12.67 ± 0.63 13.67 ± 0.54 14.72 ± 0.6 12.74 ± 0.49
IDDS 7.94 ± 0.81 14.19 ± 0.37 14.27 ± 0.22 14.65 ± 0.24 13.68 ± 0.11
Random 6.3 ± 1.68 13.23 ± 0.71 14.21 ± 0.39 14.15 ± 0.56 12.83 ± 0.49
NSP 5.91 ± 1.62 10.24 ± 2.01 12.2 ± 0.77 13.14 ± 0.49 11.04 ± 0.56
ENSP 5.25 ± 0.9 10.53 ± 1.22 11.23 ± 2.42 12.9 ± 0.82 11.15 ± 0.69

ROUGE-L
SacreBLEUVar 15.07 ± 1.55 24.47 ± 0.84 25.81 ± 0.75 27.2 ± 0.83 24.43 ± 0.57
IDDS 16.8 ± 1.57 27.53 ± 0.56 27.36 ± 0.33 28.4 ± 0.43 26.75 ± 0.15
Random 13.24 ± 3.23 25.65 ± 0.99 26.82 ± 0.58 27.13 ± 0.69 24.76 ± 0.75
NSP 12.75 ± 3.07 20.99 ± 3.72 24.21 ± 1.27 25.93 ± 1.04 22.33 ± 0.93
ENSP 12.0 ± 2.11 21.63 ± 2.12 22.71 ± 4.2 26.12 ± 0.61 22.71 ± 1.21

Table 25: ROUGE scores of PEGASUS on AESLC with various AL strategies with query size = 10.
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B.3.2 WikiHow
Query size = 10
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Figure 17: ROUGE scores of the best performing query strategies with BART as an acquisition model on WikiHow
with query size = 10.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Average

ROUGE-1
BLEUVar 26.88 ± 0.6 27.61 ± 0.72 27.64 ± 0.64 28.08 ± 0.39 27.65 ± 0.41
IDDS 27.64 ± 0.41 28.8 ± 0.3 28.93 ± 0.53 28.69 ± 0.33 28.71 ± 0.36
Random 27.57 ± 0.55 28.11 ± 0.66 28.19 ± 0.59 28.42 ± 0.75 28.15 ± 0.49
NSP 26.52 ± 0.49 27.41 ± 0.81 27.23 ± 1.1 27.51 ± 1.09 27.41 ± 0.85
ENSP 26.91 ± 0.47 27.6 ± 0.48 27.53 ± 0.8 27.83 ± 0.93 27.52 ± 0.71

ROUGE-2
BLEUVar 7.43 ± 0.3 8.64 ± 0.22 9.19 ± 0.2 9.54 ± 0.23 8.83 ± 0.16
IDDS 8.0 ± 0.17 9.1 ± 0.1 9.65 ± 0.17 9.75 ± 0.21 9.3 ± 0.13
Random 7.77 ± 0.21 8.73 ± 0.31 9.2 ± 0.25 9.62 ± 0.29 8.93 ± 0.13
NSP 7.27 ± 0.22 8.32 ± 0.26 8.69 ± 0.31 8.76 ± 0.43 8.54 ± 0.35
ENSP 7.4 ± 0.18 8.43 ± 0.17 8.61 ± 0.34 8.85 ± 0.4 8.44 ± 0.26

ROUGE-L
BLEUVar 18.82 ± 0.37 20.07 ± 0.41 20.56 ± 0.34 20.9 ± 0.36 20.25 ± 0.21
IDDS 19.48 ± 0.21 20.87 ± 0.13 21.4 ± 0.28 21.39 ± 0.27 20.98 ± 0.18
Random 19.35 ± 0.49 20.29 ± 0.36 20.75 ± 0.36 21.05 ± 0.42 20.5 ± 0.23
NSP 18.5 ± 0.36 19.88 ± 0.53 20.11 ± 0.6 20.08 ± 0.81 19.94 ± 0.46
ENSP 18.65 ± 0.27 19.67 ± 0.29 20.43 ± 0.72 20.71 ± 0.43 19.97 ± 0.6

Table 26: ROUGE scores of BART on WikiHow with various AL strategies with query size = 10.
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B.3.3 PubMed
Query size = 10
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Figure 18: ROUGE scores of the best performing query strategies with BART as an acquisition model on PubMed
with query size = 10.

AL Strategy Iter. 1 Iter. 5 Iter. 10 Iter. 15 Average

ROUGE-1
BLEUVar 26.07 ± 1.01 27.92 ± 1.2 27.91 ± 1.0 27.52 ± 0.93 27.51 ± 0.87
IDDS 28.86 ± 1.41 29.98 ± 1.11 30.06 ± 0.97 29.83 ± 0.84 29.89 ± 0.97
Random 26.8 ± 2.27 26.77 ± 1.55 27.8 ± 0.78 27.23 ± 0.84 27.45 ± 1.37
NSP 26.31 ± 0.97 27.48 ± 0.87 27.48 ± 2.07 26.02 ± 6.82 27.15 ± 1.18
ENSP 26.16 ± 1.16 27.75 ± 1.56 27.65 ± 1.32 27.53 ± 1.62 27.51 ± 1.12

ROUGE-2
BLEUVar 8.61 ± 0.27 9.95 ± 0.31 10.26 ± 0.23 10.17 ± 0.25 9.92 ± 0.22
IDDS 9.58 ± 0.41 10.66 ± 0.29 10.79 ± 0.32 10.78 ± 0.24 10.6 ± 0.27
Random 8.83 ± 0.71 9.55 ± 0.55 10.13 ± 0.18 10.1 ± 0.36 9.85 ± 0.39
NSP 8.68 ± 0.29 9.71 ± 0.37 9.64 ± 0.72 9.3 ± 3.1 9.52 ± 0.44
ENSP 8.66 ± 0.35 9.87 ± 0.47 10.21 ± 0.35 10.18 ± 0.41 9.89 ± 0.32

ROUGE-L
BLEUVar 16.19 ± 0.37 17.37 ± 0.4 17.53 ± 0.31 17.41 ± 0.34 17.26 ± 0.29
IDDS 17.34 ± 0.52 18.17 ± 0.39 18.24 ± 0.37 18.17 ± 0.31 18.11 ± 0.35
Random 16.44 ± 0.89 16.82 ± 0.69 17.38 ± 0.26 17.29 ± 0.26 17.16 ± 0.51
NSP 16.31 ± 0.41 17.11 ± 0.42 17.08 ± 0.82 16.52 ± 3.33 16.93 ± 0.54
ENSP 16.23 ± 0.46 17.27 ± 0.57 17.46 ± 0.45 17.39 ± 0.54 17.23 ± 0.38

Table 27: ROUGE scores of BART on PubMed with various AL strategies with query size = 10.
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C Computationally Efficient AL

Hardware Configuration
We use the following hardware configuration for the experiments: 2 Intel Xeon Platinum 8168, 2.7 GHz,
24 cores CPU; NVIDIA Tesla v100 GPU, 32 Gb of VRAM. The results are averaged across 5 runs with
different seeds to ensure stability.

Experiment Hyperparameters
On each iteration, we select 1% of instances according to AL strategy for text classification datasets,
and 2% of instances for sequence tagging. For UPS, we use γ = 0.1, T = 0.01, and recalculate the
uncertainty estimates for the whole dataset on the 0-th, 1-st, 4-th, and 8-th iterations.
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Figure 19: AG News dataset: performance of PLASM and UPS algorithms compared to classic AL and acquisition-
successor mismatch (ASM) settings. For all the experiments, ELECTRA is used as a successor model (therefore, as
an acquisition model in “classic AL” as well), and DistilBERT – for acquisition in PLASM and ASM.

432



C.2 IMDB
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Figure 20: IMDB dataset: performance of PLASM and UPS algorithms compared to classic AL and acquisition-
successor mismatch (ASM) settings. For all the experiments, RoBERTa is used as a successor model (therefore, as
an acquisition model in “classic AL” as well), and DistilELECTRA – for acquisition in PLASM and ASM.
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Figure 21: Duration in seconds of all the training and inference phases of the simulated AL with different acquisition
settings on IMDB with query size = 1% and 15 AL iterations. RoBERTa is used as a successor model, and
DistilELECTRA – for acquisition in PLASM.
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C.3 CoNLL-2003
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Figure 22: CoNLL dataset: performance of PLASM and UPS algorithms compared to classic AL and acquisition-
successor mismatch (ASM) settings. For all the experiments, ELECTRA is used as a successor model (therefore, as
an acquisition model in “classic AL” as well), and DistilBERT – for acquisition in PLASM and ASM.
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Figure 23: Duration in seconds of all the training and inference phases of the simulated AL with different acquisition
settings on CoNLL-2003 with query size = 2% and 15 AL iterations. ELECTRA is used as a successor model, and
DistilBERT – for acquisition in PLASM.
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