@inproceedings{bast-etal-2022-elevant,
title = "{ELEVANT}: A Fully Automatic Fine-Grained Entity Linking Evaluation and Analysis Tool",
author = "Bast, Hannah and
Hertel, Matthias and
Prange, Natalie",
editor = "Che, Wanxiang and
Shutova, Ekaterina",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = dec,
year = "2022",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-demos.8/",
doi = "10.18653/v1/2022.emnlp-demos.8",
pages = "72--79",
abstract = "We present Elevant, a tool for the fully automatic fine-grained evaluation of a set of entity linkers on a set of benchmarks. Elevant provides an automatic breakdown of the performance by various error categories and by entity type. Elevant also provides a rich and compact, yet very intuitive and self-explanatory visualization of the results of a linker on a benchmark in comparison to the ground truth. A live demo, the link to the complete code base on GitHub and a link to a demo video are provided under \url{https://elevant.cs.uni-freiburg.de} ."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bast-etal-2022-elevant">
<titleInfo>
<title>ELEVANT: A Fully Automatic Fine-Grained Entity Linking Evaluation and Analysis Tool</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hannah</namePart>
<namePart type="family">Bast</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Hertel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Prange</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present Elevant, a tool for the fully automatic fine-grained evaluation of a set of entity linkers on a set of benchmarks. Elevant provides an automatic breakdown of the performance by various error categories and by entity type. Elevant also provides a rich and compact, yet very intuitive and self-explanatory visualization of the results of a linker on a benchmark in comparison to the ground truth. A live demo, the link to the complete code base on GitHub and a link to a demo video are provided under https://elevant.cs.uni-freiburg.de .</abstract>
<identifier type="citekey">bast-etal-2022-elevant</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-demos.8</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-demos.8/</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>72</start>
<end>79</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ELEVANT: A Fully Automatic Fine-Grained Entity Linking Evaluation and Analysis Tool
%A Bast, Hannah
%A Hertel, Matthias
%A Prange, Natalie
%Y Che, Wanxiang
%Y Shutova, Ekaterina
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F bast-etal-2022-elevant
%X We present Elevant, a tool for the fully automatic fine-grained evaluation of a set of entity linkers on a set of benchmarks. Elevant provides an automatic breakdown of the performance by various error categories and by entity type. Elevant also provides a rich and compact, yet very intuitive and self-explanatory visualization of the results of a linker on a benchmark in comparison to the ground truth. A live demo, the link to the complete code base on GitHub and a link to a demo video are provided under https://elevant.cs.uni-freiburg.de .
%R 10.18653/v1/2022.emnlp-demos.8
%U https://aclanthology.org/2022.emnlp-demos.8/
%U https://doi.org/10.18653/v1/2022.emnlp-demos.8
%P 72-79
Markdown (Informal)
[ELEVANT: A Fully Automatic Fine-Grained Entity Linking Evaluation and Analysis Tool](https://aclanthology.org/2022.emnlp-demos.8/) (Bast et al., EMNLP 2022)
ACL