
Proceedings of EMNLP 2022 Industry Track, pages 164–170
December 9–11, 2020. ©2022 Association for Computational Linguistics

164

Unsupervised training data reweighting for natural language
understanding with local distribution approximation

Jose Garrido Ramas
Amazon Alexa AI

jrramas@amazon.com

Dieu-Thu Le
Amazon Alexa AI

deule@amazon.com

Bei Chen
Amazon Alexa AI

chenbe@amazon.com

Manoj Kumar
Amazon Alexa AI

abithm@amazon.com

Kay Rottmann
Amazon Alexa AI

krrottm@amazon.com

Abstract

One of the major challenges of training Nat-
ural Language Understanding (NLU) produc-
tion models lies in the discrepancy between the
distributions of the offline training data and of
the online live data, due to, e.g., biased sam-
pling scheme, cyclic seasonality shifts, anno-
tated training data coming from a variety of
different sources, and a changing pool of users.
Consequently, the model trained by the offline
data is biased. We often observe this problem
especially in task-oriented conversational sys-
tems, where topics of interest and the charac-
teristics of users using the system change over
time. In this paper we propose an unsuper-
vised approach to mitigate the offline training
data sampling bias in multiple NLU tasks. We
show that a local distribution approximation in
the pre-trained embedding space enables the
estimation of importance weights for training
samples guiding resampling for an effective
bias mitigation. We illustrate our novel ap-
proach using multiple NLU datasets and show
improvements obtained without additional an-
notation, making this a general approach for
mitigating effects of sampling bias.

1 Introduction

Production Natural Language Understanding
(NLU) models are typically trained on the offline
annotated data. Models learn from the offline data
to perform classification on the online live data in
production after the model being deployed.

The core of voice-controlled assistants, such as
Google Home, Amazon Alexa, or Siri, apply NLU
models to perform both intent classification and
slot labelling (Weld et al., 2021). For example,
the input utterance "set alarm at 9 am", would be
classified as "SetAlarmIntent" intent, and the slots
"9" and "am" would be labelled as Time.

In the deployed NLU systems, a distribution mis-
match between training and live data is common.
Some factors contributing to such a mismatch are

changes of the live data distribution over time (due
to, for example, new users or to seasonal changes),
and usage of data from other more or less unre-
lated tasks to enrich the training data, so called
out-of-domain data.

The issue with this mismatch in distribution be-
tween training and inference time is that models
learn a bias towards specific classifications that
is not existing at inference time. Even if the la-
bel distributions are matched, it is still possible
that the model will have biased performance, since
demographic and speech differences need not per-
fectly correlate with label distribution, resulting
in degraded accuracy and possibly unequal per-
formance across populations (Subramanian et al.,
2021). Thus, mitigation of this distribution mis-
match is an important step in the development of
models.

While a common approach of dealing with this
kind of bias is manual upsampling of classes in
the training data (Estabrooks et al., 2004), this ap-
proach is not always optimal, due to the complexity
and variation of natural language. Data of the same
class in a classification task often come from very
different forms of language, for example slang vs.
formal language. A simple upsampling based on
the classes does not mitigate differences in usage
of slang during inference time compared with the
training data.

Another difficulty in class based resampling is to
get the correct label distribution from the live data
in the case that it is missing ground-truth. For ex-
ample, when a model is deployed, its training data
will ideally match the distribution of the current
live data, since this is the data the model will be
applied to. This current live data distribution will
be more similar to recent live data, compared to
historical data. However, manually annotating data
to obtain the ground-truth labels takes time. Thus,
during deployment, the training data should match
the unannotated live data, and in this case it is only

165

feasible to use bias reduction methods which don’t
rely on manual annotation.

In this work we build on top of importance
weighting, which is an approach that has gained
traction in other machine learning fields, but until
now has found little attention on natural language
understanding. We propose a method to assign
weights to every individual utterance in a training
corpus based on observed live usage of the sys-
tem, by using utterances’ neighbourhood in the
embedding space. We choose to find the neigh-
bourhood of utterances with KNN and KMeans
(in the case of KMeans, each cluster is considered
a neighbourhood). We choose these methods due
to their easy interpretation: For example, in the
KMeans case, one can observe a cluster of utter-
ances, its frequency online and offline, and easily
understand why this specific pattern has a high or
small weight.

The two unsupervised re-weighting based on
KNN and KMeans are compared with two base-
lines: keeping the training data as it is (with the
distribution mismatch), and, on the other hand, a
semi-supervised intent-based approach, in effect
class up/down-sampling. We evaluate our methods
on both public data and in a deployed commercial
NLU system. In the public datasets, we simulate a
distribution mismatch by both introducing a label
mismatch and also combining different sources of
data with different distributions.

We show that the unsupervised approaches can
better mitigate certain kinds of sampling bias com-
pared to the intent-based approach, while also hav-
ing the advantage that we can perform re-weighting
of the training data without need of annotation:
thus our method is suitable for test data with
fast-changing distribution. Without the need for
any labeled data, our unsupervised approaches are
generic enough to be applicable to multiple differ-
ent natural language processing tasks.

2 Related Work

The problem of dealing with training data sam-
pling bias in machine learning is well studied. The
idea of adjusting training data distribution to meet
the distribution at inference time is discussed in
(Zadrozny, 2004), (Shimodaira, 2000) and (Dudík
et al., 2005). These methods however require esti-
mation of biased densities or selection probabilities,
which pose a challenge in the real world.

Similarly in (Grover et al., 2019), to deal with

Figure 1: Example of training (blue, left) and live data
(orange, left) with different distributions, as well as the
output of R-KNN resampling the training data (blue,
right). Darker points indicate higher weight.

bias in generative models, a classifier is learned to
distinguish the data distribution from the generative
model. This allows guidance of the generation of
additional data to better mimic the existing data.
In this work we extend on the work above towards
natural language understanding, and focus on the
real world problem in which the training data is
biased with respect to the unannotated real world
application data (live data).

In (Huang et al., 2006) unsupervised model-
agnostic importance weights for every training sam-
ple are computed. Our unsupervised approach dif-
fers from theirs in that we calculate the weights
based on the neighbourhood, which makes inter-
pretation of the individual weights easier in the case
of natural language data. A closer investigation of
importance weighting can also be found in (Cortes
et al., 2010) providing theoretical bounds, as well
as in the recent work of (Fang et al., 2020) that
looks specifically at the application of importance
weighting and weight estimation for deep learning
tasks. An important difference to these approaches
is that they focus on including importance weight-
ing directly into the learning of the models. In our
work we focus however solely on the underlying
data distribution of utterances, while keeping the
estimation model the same.

In contrast to importance weighting, another
common approach in real world applications is the
use of pure upsampling of training utterances for
certain classes, based on automatic labelling of the
live data. In (Estabrooks et al., 2004) the effect
of upsampling for certain underrepresented classes

166

is investigated, showing its effectiveness. On the
other hand looking at the class distribution alone
will also not reduce data bias as described in Sec 1,
making the requirement of an automatic way of
handling different kinds of distribution mismatch
more pronounced.

3 Utterance Weight Estimation

In this section, we describe our approach on how
to estimate the weight of each individual utterance
in offline training data based on a random sample
from online live data.

Let X represent the random variable of an ut-
terance from online live data, where X follows
some distribution PX , denoted as X ∼ PX . Let
Y be the random variable of true labels of X ,
where Y follows some distribution PY , denoted
as Y ∼ PY . Also, let X ′ and Y ′ be the corre-
sponding random variables of X and Y in offline
data, where X ′ ∼ PX′ and Y ′ ∼ PY ′ . The issue
we aim to resolve is that typically PX′ 6= PX and
PY ′ 6= PY .

Analysing the difference in distributions of ut-
terances PX and PX′ is particularly challenging in
NLP because the different surface forms of utter-
ances do not necessarily imply the semantic differ-
ence in classification tasks. However, due to the
advance of natural language embeddings, we are
now able to efficiently approximate the local distri-
butions over the semantic meanings of text which
allows the estimation of PX and PX′ . Specifically,
we propose to approximate the difference of local
distributions in offline and online utterances sum-
marized as follows:

1. Map all utterances of offline training and on-
line live data into the embedding space.

2. For every offline training utterance xi, es-
timate the local approximations of PX and
PX′ , denoted as P̂X and P̂X′ and compute the
weight using its neighbourhood utterances

wi =
P̂X(X = xi)

P̂X′(X ′ = xi)
.

3. Resample the utterance xi in offline training
data according to the weight wi.

3.1 Mapping utterances into embedding
space

Pre-trained BERT-based models sentence-level rep-
resentations do not guarantee that semantically sim-
ilar utterances will be close in the embedding space.

Thus, for the mapping of the text into the em-
bedding space, we use Sentence-BERT (Reimers
and Gurevych, 2019a), which modifies the original
BERT architecture via siamese and triplet network
structures to compute semantically meaningful em-
beddings which can be compared using several
functions such as cosine similarity or euclidean
distance.

3.2 Local Distribution Approximation

To mitigate the distribution mismatch we aim to de-
bias the local distribution of each training utterance
to match the live data distribution. Having embed-
ded utterances into the embedding space in the first
step, it is now possible to estimate the local neigh-
bourhood of text utterances by using the distances
in the embedding space. Then, we are able to de-
termine an approximation of the local distributions
PX and PX′ at some given utterance by looking at
the number of samples in this neighbourhood that
belong to either X or X ′. In the following we pro-
pose three different reweighting methods, which
differ on how the neighbourhood of each utterance
is defined: Reweighting K-Nearest-Neighbour (R-
KNN), Reweighting KMeans (R-KMeans) and, as
an additional method, an intent-based approach
(B-intent; effectively class up/down sampling).

R-KNN (Reweighting via KNN): The first lo-
cal approximation we discuss is based on k-nearest-
neighbours. We follow the standard procedure to
use K =

√
N with N being the total number of ut-

terances in training and the live sample combined.
We aim to determine the weight the individual

training utterance xi, by using a sample of embed-
ded training samples T and of live samples L. Let
KNN(x) be the set of K nearest neighbours to a
point x in the embedding space. We determine:

D
(i)
train =

⋃
e∈KNN(xi), e∈T

e

the set of all utterances that are part of both the
neighbourhood of a training utterance xi and the
training data. In a similar way we determine the
set of all utterances from the live traffic sample L
that fall into the neighbourhood of xi:

D
(i)
live =

⋃
e∈KNN(ui),e∈L

e

With these two sets, we approximate the probability
of having a training sample in this region of the

167

Figure 2: Pipeline for utterance reweighting. We combine many different sources of training data, and then assign
a high/low weight to each utterance depending on the recent, unannotated live data, which follows the most similar
distribution the data the model will be applied to (compared to, for example, historical annotated live data)

embedding space:

p(x ∈ T |neighbourhood(xi)) =
|D(i)

train|
|T |

And similarly we approximate the probability of
a live utterance x being seen in this region of the
embedding space as

p(x ∈ L|neighbourhood(xi)) =
|D(i)

live|
|L|

. The ratio of these two probability approximations
is the weight we assign to the utterance xi:

wi =
p(x ∈ L|neighbourhood(ti))
p(x ∈ T |neighbourhood(ti))

wi therefore indicates therefore how much more
likely it is that an utterance in a certain region is
part of the live traffic in comparison to being part
of the training data.

R-Kmeans (Reweighting via KMeans) An-
other way of approximating neighbourhoods is
with unsupervised clustering. In this case the train-
ing and live data are combined and then clusters
are computed in the embedding space. Then, the
neighbourhood is all utterances within the same
cluster. Thus, all utterances within a cluster obtain
the same weight. After having found the neigh-
bourhoodsD(i)

train andD(i)
live through clustering, we

follow exactly the same equations as above to com-
pute the weights. For simplicity we chose K-Means
clustering (MacQueen et al., 1967) and chose K as
K =

√
N . If the live data and the training data

came from the same distribution, it would be ex-

pected to find that, in each cluster i, D
(i)
train

D
(i)
live

≈ |T |
|L| .

After reweighting each utterance with a weight cal-
culated with R-KMeans, the above equality is true
on every cluster.

B-intent (Baseline via intent) As a baseline, we
reweight the data based on the label distribution.
The problem with this approach is it can’t address
latent distribution mismatches not directly related
to the labels, as for example formal and informal
language (see Sec 1). We train a classifier on the
biased training data to infer P̂Y , an approxima-
tion of PY , and we use P ′

Y as is known from the
annotated training data. We give each intent a
weight as: wintent = P̂Y (intent)

P ′
Y (intent) which is in line

with the description above for R-KNN, considering
the neighbourhood of an utterance to be made of
all utterances with the same label. As a result af-
ter reweighting the utterances of every intent with
the weight of their intent wintent, the labels of the
resampled data will follow P̂Y (intent).

3.3 Resampling the Training Data
With the computed weights for every training ex-
ample, we are now able to resample the training
data according to the live data distribution.

A weight < 1.0 means, that this training utter-
ance is less reflective of the live distribution, while
a weight > 1.0 reflects utterances more important
for matching the live distribution.

While there are different ways in the literature of
using this reweighting information, like (Fang et al.,
2020) and (Huang et al., 2006) using it directly
as part of the optimisation in the learning of the
machine learning model, we chose the most straight
forward of up- and down-sampling the utterances
directly in the training data. A toy example of
R-KNN resampling can be seen in Fig. 1.

4 Experiments

In our experiments we evaluated our methods on
multiple different NLU datasets to verify the feasi-

168

B-Bias B-intent R-KNN R-KMeans R-intent (rel) R-KNN(rel) R-KMeans (rel)
snips int 0.0164 0.0161 0.0162 0.0157 -1.82927 -1.21951 -4.26829
slurp int 0.1542 0.15 0.148 0.1462 -2.72374 -4.02075 -5.18807
snips utt 0.1329 0.13 0.1214 0.1258 -2.18209 -8.65312 -5.34236
slurp utt 0.34 0.3372 0.3324 0.3322 -0.82353 -2.23529 -2.29412

Table 1: Intent ("int") and utterance ("utt") error rates of the different methods in SLURP/ SNIPS datasets. Best
result in bold. Each experiment is run ten times, and the average is reported. Both absolute value and relative
change with respect to the first baseline is also reported.

bility of the approach.

4.1 Datasets
We tested our methods on a large commercial
voice assistant dataset, as well as in two public
ones: SLURP (Bastianelli et al., 2020) and SNIPS
(Coucke et al., 2018). In all these datasets, the NLU
task is intent classification and slot labelling. In the
commercial dataset case, data is de-identified.

The training and test data are manually anno-
tated, whereas the live data isn’t. In the commercial
voice assistant scenario, we take a sample of last
month’s unannotated live data as representative of
current usage of the system. The size of the sample
is the same as the offline training data. The anno-
tated live data (test data), is not available during
model deployment, but can be obtained afterwards
to estimate the performance of the method.

4.2 Bias simulation strategies
Most available natural language understanding
datasets are very well curated, with the test sets
closely resembling the distribution of the training
data. Thus, in the public datasets we simulate bias
that could occur in real world applications via two
different strategies on the training data:

Intent-based sampling bias: We introduce bias
in the label distribution in the following way: each
intent is assigned to either a low-sampling bucket
(with probaility 20%) or to a high-sampling bucket
(with probability 80%). The two intents that are
in common between SNIPS and SLURP tasks (re-
lated to weather and to music) are both assigned
to the low-sampling bucket. Finally, intents in the
low-sampling buckets are down-sized to 20% of
their original size, by randomly removing 80% of
utterances which are annotated as belonging to this
intent. The high-sampling intents are left as is.

Add OOD data: To introduce bias not directly
related to the labels, as well as mimic the real-life
scenario in which the training set is composed of
different data sources with different amounts of

noise, we also add, to each task, the training data
of the other task. That is, we add the SNIPS data
to the SLURP training set, and we add the SLURP
data to the SNIPS training set. Prior to adding the
data, we first produce machine-annotated labels for
the SNIPS utterances in the SLURP label space,
as well as labels to the SLURP utterances in the
SNIPS label space.

4.3 Experimental Setup

The embeddings were generated with paraphrase-
MiniLM-L6-v2 model part of (Reimers and
Gurevych, 2019a) sentence transformer model fam-
ily. This model is fine-tuned so that semantically
similar sentences are close in the embedding space
with respect to distance functions, including eu-
clidean distance (Reimers and Gurevych, 2019b).

To not leak information of the unseen test data
into the reweighting, we used the development data
for the distribution approximation.

For the resampling, we upsampled utterances
with a weight wi to frequency: ni = bwic + θ,
where θ is random variable that is 1 with p =
wi − bwic, and 0 otherwise. The expected value is
E[ni] = wi

We train a BERT model (Chen et al., 2019).
For hyperparameter tuning, we follow (Chen et al.,
2019), and use adam optimizer (Kingma and Ba,
2014) over 4 epochs, with a learning rate of 5e-
5 and batch size 32. We use the implementation
from (Wolf et al., 2019), with bert-base-uncased
pretrained model. We report f1-score on the test
data.

We compare our unsupervised approaches (R-
KNN and R-KMeans from Sec 3.2) with two base-
lines: B-Bias (baseline model trained on the biased
data) and B-Intent, baseline model in which the
biased data is up/down-sampled so that the label
distribution matches the live data (see Sec 3.2). The
BERT model described above is used to obtain the
hypothesised intent on the live data.

169

4.4 Results

Public datasets: The results of our experiments
can be seen in table 1. We report intent classifica-
tion error rate, as well as utterance error rate. We
define utterance error rate as the fraction of utter-
ances in which there is an error either in the slot
labelling or intent classification task.

Each experiment is run ten times, and the aver-
age error rate is reported. The difference between
both R-KMeans and the two baselines (B-intent
and B-bias) passes a two-sided paired t-test for
statistical significance at 95% confidence level.

The difference Between the R-KMeans and R-
KNN approaches is, however, not statistically sig-
nificant. R-KMeans has the advantage over R-KNN
of easier interpretation of the weights: one weight
is produced per cluster, instead of per utterance.
The clusters can manually be inspected, and, com-
paring the in-cluster frequency of the live and train-
ing data, understand why this cluster got a high/
low weight.

For example, we observe in our SNIPS run two
distinct clusters related to weather queries that get
different weights: the first one, related to questions
about specific weather events (such as snow or rain:
includes, for example, the utterance "is it snow-
ing in California". Using R-KMeans reweighting,
this cluster receives a weight of 1.04 (which can
be interpreted roughly as: this pattern of utterances
is equally frequent in the live data (development
SNIPS data in this case) as in the training data.
Thus, it does not need to be upsampled or down-
sampled.

However, a different cluster of weather queries
containing more general questions "what is the
weather forecast for Akers New Hampshire" re-
ceives a weight of 12: This cluster is 12 times less
frequent in the training data than in the live data.
Thus, this cluster is upsampled by 12.

Overall, in our experiments the two unsupervised
methods perform better than both intent-based re-
sampling and the baseline. A limitation of our
work, however, is that it requires live annotated
data to use as test data, to estimate the performance
post model deployment. Obtaining this data can be
a challenge in real-life applications.

Commercial dataset: On the commercial
dataset, we show that, in the case that the train-
ing data has a different distribution to the live
and test data, applying reweighting techniques
with local distribution approximation can improve

Intent Utterance
Overall -4.63 -1.99
Global -2.02 -1.29
HomeAutomation -13.77 -9.49
Knowledge -2.1 -2.17
ToDos -12.34 -3.99
Notifications -9.09 -6.29

Table 2: Relative reduction in error rates (both intent
and utterance) in the commercial dataset.

performance. We compare the results of apply-
ing reweighting on the training data vs. without
reweighting strategy and report the relative differ-
ences. We use R-KMeans reweighting, due to the
easier manual inspection of the assigned weights
(see Sec 3.2).

We report the relative difference in both intent
error rate and utterance-error rate. As shown in
Table 2, we see improvements in both utterance
and intent error metric, with the biggest coming
from Home Automation domain (13.77%), and an
overall improvement of 4.63% accross all domains.
The results with respect to the baseline passes a
two-sided paired t-test for statistical significance at
95% confidence level.

5 Conclusion and future work

In this work, we showed how the reweighting of
training data using local distribution approximation
helps in mitigating sampling bias in natural lan-
guage understanding production models. We simu-
lated the bias in public training datasets to mimic
real world application scenarios in which different
data sources are used, and they each come from
different distributions. We reweighted utterances
based on the approximation of local distribution to
minimise the mismatch between the training and
online live traffic data. The simplicity of our ap-
proach, and the fact that it does not require manual
or machine annotation, means that it can be used to
quickly adapt the training data to the ever-changing
live data in deployed models. Experiments in both
a commercial dataset and two public datasets have
shown that our approach can mitigate the mismatch
and bias in training data without additional manual
tuning. In the future, we want to experiment the
combined impact of our method with different data
augmentation techniques, study the impact on fair-
ness across populations, as well as bias detection
methods to trigger the reweighting model.

170

6 Ethical considerations

In this work we apply a reweighting method before
model deployment to mitigate the problem of bias
in the training data compared to the live data. We
target overall accuracy as the metric we aim to im-
prove, and we achieve so by tailoring the model
to the latest live data at model deployment. How-
ever, the impact of reweighting on per-population
accuracy has not been studied. There is a risk that,
due to focusing on current live data, populations
which at the time of a model deployment are not
extensively using the model are not well-served
by the reweighting, even though overall accuracy
improves.

References
Emanuele Bastianelli, Andrea Vanzo, Pawel Swietojan-

ski, and Verena Rieser. 2020. SLURP: A spoken lan-
guage understanding resource package. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7252–7262, Online. Association for Computational
Linguistics.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert
for joint intent classification and slot filling. arXiv
preprint arXiv:1902.10909.

Corinna Cortes, Yishay Mansour, and Mehryar Mohri.
2010. Learning bounds for importance weighting.
In Nips, volume 10, pages 442–450. Citeseer.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190.

Miroslav Dudík, Steven Phillips, and Robert E
Schapire. 2005. Correcting sample selection bias in
maximum entropy density estimation. Advances in
neural information processing systems, 18:323–330.

Andrew Estabrooks, Taeho Jo, and Nathalie Japkowicz.
2004. A multiple resampling method for learning
from imbalanced data sets. Computational intelli-
gence, 20(1):18–36.

Tongtong Fang, Nan Lu, Gang Niu, and Masashi
Sugiyama. 2020. Rethinking importance weighting
for deep learning under distribution shift. arXiv
preprint arXiv:2006.04662.

Aditya Grover, Jiaming Song, Alekh Agarwal, Kenneth
Tran, Ashish Kapoor, Eric Horvitz, and Stefano Er-
mon. 2019. Bias correction of learned generative
models using likelihood-free importance weighting.
arXiv preprint arXiv:1906.09531.

Jiayuan Huang, Arthur Gretton, Karsten Borgwardt,
Bernhard Schölkopf, and Alex Smola. 2006. Cor-
recting sample selection bias by unlabeled data. Ad-
vances in neural information processing systems,
19:601–608.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. Cite
arxiv:1412.6980Comment: Published as a confer-
ence paper at the 3rd International Conference for
Learning Representations, San Diego, 2015.

James MacQueen et al. 1967. Some methods for clas-
sification and analysis of multivariate observations.
In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1,
pages 281–297. Oakland, CA, USA.

Nils Reimers and Iryna Gurevych. 2019a. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019b. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for
Computational Linguistics.

Hidetoshi Shimodaira. 2000. Improving predictive in-
ference under covariate shift by weighting the log-
likelihood function. Journal of statistical planning
and inference, 90(2):227–244.

Shivashankar Subramanian, Xudong Han, Timothy
Baldwin, Trevor Cohn, and Lea Frermann. 2021.
Evaluating debiasing techniques for intersectional
biases. CoRR, abs/2109.10441.

Henry Weld, Xiaoqi Huang, Siqi Long, Josiah Poon,
and Soyeon Caren Han. 2021. A survey of joint in-
tent detection and slot-filling models in natural lan-
guage understanding. CoRR, abs/2101.08091.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. CoRR, abs/1910.03771.

Bianca Zadrozny. 2004. Learning and evaluating clas-
sifiers under sample selection bias. In Proceedings
of the twenty-first international conference on Ma-
chine learning, page 114.

https://doi.org/10.18653/v1/2020.emnlp-main.588
https://doi.org/10.18653/v1/2020.emnlp-main.588
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
http://arxiv.org/abs/2109.10441
http://arxiv.org/abs/2109.10441
http://arxiv.org/abs/2101.08091
http://arxiv.org/abs/2101.08091
http://arxiv.org/abs/2101.08091
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

