@inproceedings{vo-etal-2022-tackling,
title = "Tackling Temporal Questions in Natural Language Interface to Databases",
author = "Vo, Ngoc Phuoc An and
Popescu, Octavian and
Manotas, Irene and
Sheinin, Vadim",
editor = "Li, Yunyao and
Lazaridou, Angeliki",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track",
month = dec,
year = "2022",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-industry.18",
doi = "10.18653/v1/2022.emnlp-industry.18",
pages = "179--187",
abstract = "Temporal aspect is one of the most challenging areas in Natural Language Interface to Databases (NLIDB). This paper addresses and examines how temporal questions being studied and supported by the research community at both levels: popular annotated dataset (e.g. Spider) and recent advanced models. We present a new dataset with accompanied databases supporting temporal questions in NLIDB. We experiment with two SOTA models (Picard and ValueNet) to investigate how our new dataset helps these models learn and improve performance in temporal aspect.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vo-etal-2022-tackling">
<titleInfo>
<title>Tackling Temporal Questions in Natural Language Interface to Databases</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ngoc</namePart>
<namePart type="given">Phuoc</namePart>
<namePart type="given">An</namePart>
<namePart type="family">Vo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Octavian</namePart>
<namePart type="family">Popescu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Irene</namePart>
<namePart type="family">Manotas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vadim</namePart>
<namePart type="family">Sheinin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yunyao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Angeliki</namePart>
<namePart type="family">Lazaridou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Temporal aspect is one of the most challenging areas in Natural Language Interface to Databases (NLIDB). This paper addresses and examines how temporal questions being studied and supported by the research community at both levels: popular annotated dataset (e.g. Spider) and recent advanced models. We present a new dataset with accompanied databases supporting temporal questions in NLIDB. We experiment with two SOTA models (Picard and ValueNet) to investigate how our new dataset helps these models learn and improve performance in temporal aspect.</abstract>
<identifier type="citekey">vo-etal-2022-tackling</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-industry.18</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-industry.18</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>179</start>
<end>187</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Tackling Temporal Questions in Natural Language Interface to Databases
%A Vo, Ngoc Phuoc An
%A Popescu, Octavian
%A Manotas, Irene
%A Sheinin, Vadim
%Y Li, Yunyao
%Y Lazaridou, Angeliki
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F vo-etal-2022-tackling
%X Temporal aspect is one of the most challenging areas in Natural Language Interface to Databases (NLIDB). This paper addresses and examines how temporal questions being studied and supported by the research community at both levels: popular annotated dataset (e.g. Spider) and recent advanced models. We present a new dataset with accompanied databases supporting temporal questions in NLIDB. We experiment with two SOTA models (Picard and ValueNet) to investigate how our new dataset helps these models learn and improve performance in temporal aspect.
%R 10.18653/v1/2022.emnlp-industry.18
%U https://aclanthology.org/2022.emnlp-industry.18
%U https://doi.org/10.18653/v1/2022.emnlp-industry.18
%P 179-187
Markdown (Informal)
[Tackling Temporal Questions in Natural Language Interface to Databases](https://aclanthology.org/2022.emnlp-industry.18) (Vo et al., EMNLP 2022)
ACL