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Abstract

Temporal aspect is one of the most challeng-
ing areas in Natural Language Interface to
Databases (NLIDB). This paper addresses and
examines how temporal questions being stud-
ied and supported by the research commu-
nity at both levels: popular annotated dataset
(e.g. Spider) and recent advanced models.
We present a new dataset with accompanied
databases supporting temporal questions in
NLIDB. We experiment with two SOTA mod-
els (Picard and ValueNet) to investigate how
our new dataset helps these models learn and
improve performance in temporal aspect.

1 Introduction

Natural language interface to databases (NLIDB)
is a task to bridge the gap between storing complex
structured data in databases (DBs) and retrieving
structured data from databases using natural lan-
guage questions. An NLIDB system allows users
to access information stored in a DB by using ques-
tions in natural language (e.g. English). In reality,
temporal aspect is a common dimension existing
in any DBs since it is realistic and practical to store
data with associated date/time in DBs. However,
it is challenging to retrieve information from DBs
with temporal aspect due to difficulties and limita-
tions such as 1) complex and limited association be-
tween certain entities/attributes and temporal info
in DB that reflects different states of data in dif-
ferent time frames, and 2) complexity of natural
language expressions to decipher the actual value
of temporal expressions in given questions to cor-
rectly derive data from DBs. Temporal aspect is a
common yet distinct and complex dimension that
needs to be handled carefully in NLIDB.

Given its difficulties and complexity, temporal
aspect in NLIDB is currently under-attended by
the research community. First of all, it is diffi-
cult to design and create database that supports
temporal dimension. Next, it is more challenging

to create pairs of questions and associated SQL
queries that support the learning of temporal as-
pect in NLIDB (discussion in Section 4). Our
contribution is threefold: i) we investigated how
temporal aspect was defined and annotated in the
well-known Spider dataset, ii) we created the new
dataset TempQ4NLIDB supporting the learning
and understanding temporal questions in NLIDB,
and iii) we experimented with two SOTA models -
ValueNet (Brunner and Stockinger, 2021) and Pi-
card (Scholak et al., 2021) - to understand how
they learn and handle temporal questions. To the
best of our knowledge, this work is one of the first
attempts trying to explore this research area to sup-
port temporal questions in NLIDB.

2 Background and Related Works

NLIDB or Text-to-SQL is a long standing NLP
task with many references on its complexity and
achievements obtained recently (Navid et al., 2017;
Popescu et al.; Yao et al., 2010). Although there
is no official definition of temporal questions in
NLIDB, the study (Androutsopoulos et al., 1995)
mentioned about temporal questions with respect to
temporal databases (Jensen and Snodgrass, 2018).
In contrast, the study of temporal questions is a
strong interest in Question Answering (QA) com-
munity. In the scope of this paper, we adopt a def-
inition of temporal questions in QA for our work
that is "A temporal question is any question, which
contains a temporal expression, a temporal signal,
or whose answer is of temporal nature." (Jia et al.,
2018). In QA, temporal questions can be answered
by temporal information embedded in semantic re-
lations and timeline between events in corpus or
taxonomy, whereas DB records associated with
temporal dimension are answers in NLIDB.

The Spider dataset (Yu et al., 2018) and Spider
challenge was introduced in 2018 where partici-
pating teams can have their systems evaluated on
an unseen test set which is not available to public.
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There are two Spider sub-challenges, the first one
for SQL inference without values and the second
for systems that handle the values in SQL queries.
Many attempts with different approaches, based
on neural networks, especially on encoder-decoder
architecture, have continuously improved the state
of the art (SOTA). First, the sequence-to-sequence
approach was introduced (Cai et al., 2018; Gehring
et al., 2017; Yin et al., 2016; Rabinovich et al.,
2017) in which a neural network with very good
proven qualities in translation tasks translates an
English query into an SQL query. These systems
infer the SQL formula directly as a standard trans-
lating task from one language to another.

Instead of translating into SQL, another ap-
proach translates questions into a representation
that captures semantics of a question, namely In-
termediate Representation (IR) (Guo et al., 2019;
Zhang et al., 2019; Bogin et al., 2019). The net-
work learns a more structured and compact form of
the query itself. From IR to SQL is a deterministic
process: a context free grammar is used to convert
one into another. The authors build on the work of
(Sun et al., 2019; Cheng et al., 2019) that used Ab-
stract Syntax Tree (AST). The decoder infers the IR
as an AST representation of the query. Among oth-
ers, ValueNet (Brunner and Stockinger, 2021) not
only uses IR approach but also extends the context
free grammar to include values and became one of
the best systems in the Spider challenge in 2020.
Recently, PICARD (Scholak et al., 2021), a state-
of-the-art algorithm for constrained decoding was
introduced and achieved top rank in Spider chal-
lenge. It relies on the structure and the content of
the database as well as the knowledge encapsulated
in the T5 language model (Raffel et al., 2020).

3 Discovering Temporal Aspect in Spider

Spider (Yu et al., 2018) is a popular large-scale
complex and cross-domain dataset supporting
Text-to-SQL task consisting of 10,181 questions
and 5,693 unique complex SQL queries on 200
databases with multiple tables covering 138 dif-
ferent domains. Since there is no description of
temporal aspect in Spider, we investigate temporal
questions in this dataset.

3.1 Questions Related to Temporal Aspect

Questions related to temporal aspect are questions
that query or process one or more column repre-
senting date/month/year/time in SQL queries.

Searching in Spider, among 7,000 questions in
Train set, we found 504 SQL queries (7.2%) and
67 SQL queries (6.46%) among 1,036 questions in
Dev set that hit our search keywords, respectively.
Questions associated with these SQL queries are
considered having temporal aspect.

3.2 Temporal Question Types

Among questions found in Section 3.1, we define
three question types regarding temporal aspect:

Type 1: Questions querying Temporal Info.
This type of question only queries for temporal in-
formation from DBs using the SELECT clause and
has no logical operation with temporal columns in
database, such as: {What are the first names
and birth dates of players from the USA?}

Type 2: Questions querying Temporal Informa-
tion with Grouping or Sorting. This type of
question may or may not query temporal informa-
tion but it has GROUP BY or ORDER BY process-
ing on one or more temporal columns in database.
These questions usually have one or more tem-
poral adverbs like {most recently, in the order of,
youngest, oldest, longest, the latest}. For examples:
{What is the first name and country code
of the oldest player?} or {How many total
tours were there for each ranking date?}.

Type 3: Questions with Temporal Conditions.
This type of question may (not) query temporal
information but always has one ore more tempo-
ral conditions to derive required information from
DB, such as: {Show the organizer and name
for churches that opened between 1830 and
1840}. In this paper, we only focus on this type
since it is the most practical and challenging type
in reality. We found 201 and 19 temporal condition
questions in Train/Dev sets of Spider, respectively.

4 TempQ4NLIDB Dataset for NLIDB

Since temporal dimension is practical and crucial
for DBs in any real-world applications, and the
lack of dataset for temporal questions in NLIDB,
we created TempQ4NLIDB - a dataset of temporal
condition questions for studying and experimenting
with the recent advanced NLIDB models.

4.1 Accompanied Databases

We release two synthetic DBs (SQLite compati-
ble) adopted from our real-world industry projects



191

WH HR
Temporal Train 65 46
Temporal Dev 7 4
Temporal Test 28 25

Total 100 75
Non-Temporal Train 146 99
Non-Temporal Dev 16 10
Non-Temporal Test 40 78

Total 202 187

Table 1: Temporal and Non-Temporal Questions in
TempQ4NLIDB

and fully anonymized for public use. All temporal
values are in standard format YYYY-MM-DD.

Human Resource (HR) is a one-table DB con-
taining employees information such as employee
number, name, birthdate, hire date, leave date, de-
partment, manager, salary, bonus.

Warehouse (WH) is a complex schema for sales
activities consisting of 8 tables. More details can
be found in our dataset.

4.2 Temporal Condition Questions and SQLs

We created new temporal conditional questions and
SQL queries for two accompanied DBs. We also re-
lease the non-temporal questions and SQL queries
for performance evaluation and comparison (Table
1). Our dataset is available here1. We may con-
tinue expanding this dataset with more questions of
different types and complexity levels in near future.

4.2.1 An ad-hoc Date Annotator (DA)
We use an ad-hoc date annotator (a part of another
rule-based NLIDB system) (Vadim et al., 2018;
Popescu et al., 2019; Vo et al., 2019; Yeo et al.,
2021) which was built on top of Duckling2. It de-
tects temporal expressions in a given question and
produces normalized values in standard YYYY-
MM-DD format. For some experiment settings, it
also re-writes original question by replacing orig-
inal temporal expressions with their normalized
values.

4.2.2 Data Variants
We create three variants (different natural language
questions but the same SQL query) as follows:

Original Temporal Questions. This variant is
questions having original temporal expressions

1https://github.com/IBM/TempQ4NLIDB-dataset
2https://duckling.wit.ai/

without normalizing by DA. It is the most chal-
lenging data format for any given model to learn
by mapping between original temporal expressions
in a given question and the actual DB date values
in the associated SQL query.

Full-DA Questions. Temporal questions that are
pre-processed and re-written with Data Annotation
and date values are appended at the end of ques-
tions. This variant is inspired by the mechanism
that ValueNet (Brunner and Stockinger, 2021) used
to learn values from given questions.

Partial-DA Questions. Temporal questions that
are pre-processed and re-written with Data Anno-
tation without date values appended at the end of
questions. This variant can ease the learning of a
given model by mapping between the normalized
date values in a question and the DB values from
its associated SQL query.

Examples of question variants and same SQL.

• Original question: What products were sold
from 2011 to 2015?

• Full-DA question: What products were sold
from 2011-01-01 to 2015-12-31?; 2011-01-
01#date#date; 2015-12-31#date#date

• Partial-DA question: What products were sold
from 2011-01-01 to 2015-12-31

• SQL: SELECT distinct T2.PRODUCT_ID
FROM SALES AS T1 JOIN SALES_DETAILS AS
T2 ON T1.SALES_ID=T2.SALES_ID WHERE
T1.DATE >= ‘2011-01-01’ AND T1.DATE
<= ‘2015-12-31’

4.3 Annotation Guideline

Data annotation for Text-to-SQL task is not trivial.
For every data point, we must create a pair of ques-
tion and associated SQL query. In addition, data
annotation for Text-to-SQL with temporal aspect
is even more challenging as every question needs
to have at least one new temporal dimension. We
define and practise the following guideline.

4.3.1 Temporal Dimension Annotation
We define the following annotation guideline for
temporal questions.

Mapping Temporal Operators to SQL. We fol-
low the standard temporal operators {BEFORE,
AFTER, ON, IN, BETWEEN...AND} in temporal
questions mapping into standard SQL operators
supported by SQLite for temporal aspect {<, >,
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=, >= AND <=}. Especially, the BETWEEN operator
in Spider is not inclusive and mapped into (a_date
> start_date AND a_date < end_date) at SQL
level. Unlike Spider, our annotation for BETWEEN
at SQL level is inclusive. For example:

• Spider: What roles did staff members play
between ’2003-04-19’ and ’2016-03-15’?
SELECT role_code FROM Project_Staff
WHERE date_from > ‘2003-04-19’ AND
date_to < ‘2016-03-15’

• Our annotation: What are employees hired
between Jan 2012 and Jun 2012?
SELECT distinct EMPNAME FROM EMPLOYEE
WHERE HIREDATE >= ‘2012-01-01’ AND
HIREDATE <= ‘2012-06-30’

In our annotation, we support two new temporal
operators SINCE for after but including, and BY for
before but including (Table 2).

Mapping Temporal Expressions to SQL. For
mapping from temporal expressions to date val-
ues in SQL queries, we use our Date Annotator to
capture and convert all temporal expressions into
standard date format YYYY-MM-DD.

If we assume that time always exists as an in-
terval with a start_point and an end_point, we
can translate any temporal expression into a time
range. For example:

• Chirstmas 2000 = [2000-12-25, 2000-12-25]
• July 2020 = [2020-07-01, 2020-07-31]
• 2021 = [2021-01-01, 2021-12-31]
• Q1 of 1999 = [1999-01-01, 1999-03-31]

Depending on the combination between tempo-
ral operator and temporal expression in a given
question, we define rules to convert to SQL opera-
tors and values (Table 2).

Referring to the categories of temporal expres-
sions in the study (Jia et al., 2018), in the scope of
this paper, we only focus on using explicit tempo-
ral expressions for our dataset. We do not support
implicit temporal questions (e.g. 5 years ago, last
year) because for annotating normalized value of
implicit temporal expressions, it is required to have
a time anchor which we cannot embed into our
data for Text-to-SQL task. For example, given the
time anchor as 2022, last year = 2021. However,
when it is 2023 or later, the value 2021 is no longer
correct for last year. Due to the nature of current
data format of Text-to-SQL task, we cannot embed
a specific time anchor into each question and asso-
ciated SQL to support implicit temporal questions.

4.3.2 Temporal Questions and SQL Creation
Next we define the following procedure to create
natural language questions and SQL queries.

Step 1: Generating simple SQL queries with-
out temporal aspect. We first look into a given
database and generate SQL query based on the
database structure for expected information. For
example: in HR database, we can generate dif-
ferent simple queries to derive information from
every column in EMPLOYEE table: SELECT
EMPNO, SELECT EMPNAME, SELECT MGRNAME,
SELECT BIRTHDATE, SELECT HIREDATE, SELECT
LEAVEDATE, SELECT SALARY, SELECT DPNAME.

We also can generate SELECT for more than one
columns, for example: SELECT EMPNO, EMPNAME,
SALARY FROM EMPLOYEE. We define patterns of
table names and column names to automatically
generate simple SQL queries (Popescu et al., 2022).

Step 2: Identifying temporal column. We need
to verify which column has at least one temporal
aspect and establish the association between them.
For example:

1. There are 3 temporal columns: BIRTHDATE,
HIREDATE, LEAVEDATE

2. Columns that can have association with the 3
temporal columns: EMPNO, EMPNAME

3. Without columns in (2), these columns can
have no association with the 3 temporal
columns: MGRNAME, SALARY, DPNAME

Now we can attach the column having temporal
aspect with corresponding simple SELECT that we
created in Step 1 using following pattern: [SELECT
Column_from_(2) FROM EMPLOYEE WHERE
Temporal_Column_in_(1) Temporal_Operator
Temporal_Value]

For example: SELECT EMPNO, EMPNAME,
MGRNAME FROM EMPLOYEE WHERE LEAVEDATE =
‘2022-05-17’

Step 3: Searching Temporal Operator and Tem-
poral Value from DB. For evaluation with Exe-
cution Accuracy metric, the SQL query in Step #2
needs to return a valid result from DB submission.
Thus, we develop a search algorithm to find unique
temporal operator and temporal value so that the
SQL query will return a valid result from DB. At
the end of this step, we also manually verify cor-
rectness of the result of every SQL query against
the corresponding DB.
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Temporal Operators and Expressions Operators and Values in SQL
BEFORE a_temporal_expression a_date < start_point of a time range
AFTER a_temporal_expression a_date > end_point of a time range
BY a_temporal_expression a_date <= end_point of a time range

SINCE a_temporal_expression a_date >= start_point of a time range
ON | IN a_temporal_expression a_date >= start_point AND a_date <= end_point

BETWEEN temp_exp_A AND temp_exp_B a_date >= start_point_A AND a_date <= end_point_B
FROM temp_exp_A TO temp_exp_B a_date >= start_point_A AND a_date <= end_point_B

BEFORE July 14th 2021 a_date < ’2021-07-14’
BEFORE July 2021 a_date < ’2021-07-01’
BEFORE 2021 a_date < ’2021-01-01’

AFTER Oct 25th 2020 a_date > ’2020-10-25’
AFTER Oct 2020 a_date > ’2020-10-31’
AFTER 2020 a_date > ’2020-12-31’

SINCE Mar 20th 2018 a_date >= ’2018-03-20’
SINCE Mar 2018 a_date >= ’2018-03-01’
SINCE 2018 a_date >= ’2018-01-01’

BY Apr 7th 2018 a_date <= ’2018-04-07’
BY Apr 2018 a_date <= ’2018-04-30’
BY 2018 a_date <= ’2018-12-31’

ON 1/1/2021 a_date >= ’2021-01-01’ AND a_date <= ’2021-01-01’
ON Christmas 2017 a_date >= ’2017-12-25’ AND a_date <= ’2017-12-25’

IN July 2022 a_date >= ’2022-07-01’ AND a_date <= ’2022-07-31’
IN 3rd quarter of 2016 a_date >= ’2016-07-01’ AND a_date <= ’2016-07-31’
BETWEEN 1990 AND 2000 a_date >= ’1990-01-01’ AND a_date <= ’2000-12-31’
FROM 2000 TO 2010 a_date >= ’2000-01-01’ AND a_date <= ’2010-12-31’

Table 2: Rules and Examples for Mapping Temporal Operators and Expressions into SQL Queries

Step 4: Generating Natural Language Ques-
tions. We manually generate natural language
questions for SQL queries created in Step #3 by
defining semantic relations between entities and at-
tributes. We also enrich the language of questions
by using semantic similarity/relatedness techniques
(e.g. paraphrasing, synonyms) and different syntax
structures (e.g. passive voice, relative clause, prepo-
sitional phrase) to generate various WH-questions
(Popescu et al., 2018; Vo and Popescu, 2016; Vo
et al., 2015; Vo and Popescu, 2015a,b). For exam-
ples:

• Employee {has | was born} BIRTHDATE.
• Employee {joined | is hired | is employed |

is recruited | started working} in a DEPART-
MENT on a HIREDATE.

• Employee {left | retired} a DEPARTMENT
on a LEAVEDATE.

We carefully generate explicit temporal expres-
sions from the temporal filters created in Step #3
and attach to our natural language questions to gen-
erate temporal questions. For examples:

1. How many employees were hired in Decem-
ber 2012?

2. Which employees left before April 2010?
3. What employees joined Marketing department

after Christmas 2010?
4. Show me employees hired for Manufacturing

department in 1970 and retired in 2000.
5. What are the Manufacturing employees with

birthdays between 1939 and 1945?
6. What are the employees in Sales department

that have birthdays before 1970?

4.3.3 Data Annotation Validation

The annotation is semi-automatic and then data
is manually curated by one worker. We not only
examine the correctness of SQL syntax for every
given question, we also submit every SQL query to
corresponding DB and examine the result returned
from DB. Thus, we ensure that every question al-
ways has a valid result returned from submitting its
SQL query to corresponding DB. Finally the data
is examined and validated by other two workers.
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5 Experiments with SOTA Models

We define three settings to experiment with two
recent SOTA models: ValueNet (Brunner and
Stockinger, 2021) and Picard (Scholak et al., 2021)
for temporal questions.

Setting 1: Original Models trained on Spider.
We evaluate original ValueNet and Picard models
(that were trained only on Spider dataset) on tem-
poral questions in Test set of our new dataset.

Setting 2: Only Temporal Questions. We train
and evaluate ValueNet and Picard (which were al-
ready pretrained on Spider) on temporal questions
in Train and Test set of our dataset, respectively.

Setting 3: Blended Questions (NT+Full-DA).
We mix Full-DA temporal questions with other
Non-Temporal questions of the same database for
training (on top of Spider as in Setting 2) and test.

Picard. We fine-tuned T5-large with the data
splits described in settings 1 through 3 above for
each DB in the TempQ4NLIDB dataset. For set-
tings 2 and 3, we fine-tuned first on the Spider
dataset, took the best performing model, and con-
tinue the training on the corresponding training
data combination using the temporal data for each
schema. Each model was fine-tuned on 448 epochs.
Training the model for more epochs did not im-
prove the model performance on the validation set.
We used Adafactor (Shazeer and Stern, 2018), a
learning rate of 10−5, and a batch size per device
of 5. During testing, we enabled Picard with the
highest parsing mode.

Table 3 shows evaluation results of HR and WH
temporal test sets with Picard. For Setting 1, mod-
els trained without temporal data (using the default
Spider dataset for training) show very poor under-
standing of temporal questions. For Setting 2, mod-
els trained on temporal data understand temporal
questions much better. Setting 3 results show a
declining performance for models to handle both
temporal and non-temporal questions.

ValueNet (VL). We use the default configura-
tion for VL experiments. VL evaluation only re-
ports execution accuracy. For Setting 1 and 2, the
VL models performed poorly on the temporal ques-
tions. The model trained on the Spider dataset only,
but also adding the available trying, obtained less
than 1% accuracy. The main reasons is that the VL
encoder receives no information about the type of
the columns and values, and when there are more
than two values in the SQL query, the system sys-
tematically confound them. Because VL does not

implement any control over the correctness of SQL
formula, many of the SQL queries with multiple
values are wrong because the values are switched
between themselves or the wrong operator is used,
like "=" instead of ">=". As the temporal ques-
tions are at least two values with multiple operators
the inferred SQL was always wrong. For Setting
3 experiments (Table 4), as some of the questions
themselves were not multi-values, the accuracy was
significantly higher.

Observations. We learn the following lessons:

1. Only training on Spider is insufficient for un-
derstanding temporal condition questions.

2. Additional training on TempQ4NLIDB sig-
nificantly helps models to improve the under-
standing of temporal condition questions.

3. It is challenging for models to understand
temporal expressions in given questions then
generate corresponding temporal filters with
normalized values (error type 2). Rewriting
questions with normalized values of temporal
expressions (Partial-DA and Full-DA variants)
will help to generate temporal filters with cor-
rect values.

4. We mix temporal and non-temporal questions
for both training and testing to increase the
complexity (e.g. multi-table joins, multiple
selects, multiple values/filters, more complex
language and sentence structure, etc). It is
more challenging to handle both temporal and
non-temporal questions than just one type.

5. More works are needed to expand the cover-
age for other types of temporal questions (e.g.
implicit one).

6 Error Analysis

We present four error types in predictions made by
Picard and ValueNet for temporal questions.

Type 1. Models cannot detect temporal values in
question, thus, no corresponding filter created.

• How many iphones were sold since October
2013 in shops located in New York?
Prediction: select sum(t2.quantity)
from products as t1 join
sales_details as t2 on t1.product_id
= t2.product_id join sales as t3 on
t2.sales_id = t3.sales_id join shops
as t4 on t3.shop_id = t4.shop_id
where t4.address = 'New York' and
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Setting 1

DB Test Match(%) Exec(%)

HR
Original 4.35 0.00
PartialDA 0.00 0.00
FullDA 0.00 0.00

WH
Original 3.57 10.71
PartialDA 0.00 10.71
FullDA 0.00 10.71

Setting 2

HR
Original 82.61 82.61
Partial-DA 95.65 95.65
Full-DA 100.00 100.00

WH
Original 67.86 60.71
Partial-DA 89.29 92.86
Full-DA 89.29 92.86

Setting 3

HR NT + Full-DA 58.42 66.34
WH NT + Full-DA 72.00 75.00

Table 3: Picard’s Performance for Setting 1, 2, and 3.

Setting 3 (ValueNet)

DB Test Match(%) Exec(%)

HR NT + Full-DA N/A 47%
WH NT + Full-DA N/A 39%

Table 4: ValueNet’s Performance for Setting 3.

t1.type = 'IPHONE'
Actual: select distinct
sum(T3.QUANTITY) from SHOPS AS
T1 JOIN SALES AS T2 on T1.SHOP_ID =
T2.SHOP_ID JOIN SALES_DETAILS AS T3
on T2.SALES_ID = T3.SALES_ID JOIN
PRODUCTS AS T4 on T3.PRODUCT_ID
= T4.PRODUCT_ID where T2.DATE >=
'2013-10-01' and T4.TYPE = 'IPHONE'
and T1.ADDRESS = 'New York'

Type 2. Original temporal expressions used in
predicted query without normalizing values.

• Who were recruited in Marketing department
since March 2012?
Prediction: select distinct empname
from employee where dptname =
'Marketing' and hiredate > 'March
2012'
Actual: select distinct
EMPLOYEE.EMPNO from EMPLOYEE where
EMPLOYEE.DPTNAME = 'Marketing' and
EMPLOYEE.HIREDATE >= '2012-03-01'

Type 3. Missing temporal filters in prediction in
case question has multiple temporal expressions.

• What are the names of Sales employees who
were hired after 1977-12-31 and departed
before 2020-01-01; 1977-12-31#date#date;
2020-01-01#date#date
Prediction: SELECT DISTINCT T1.empname
FROM employee AS T1 WHERE T1.dptname
= '1977-12-31' and T1.hiredate <
'Sales'
Actual: select distinct
EMPLOYEE.EMPNAME from EMPLOYEE where
EMPLOYEE.HIREDATE > '1977-12-31' and
EMPLOYEE.LEAVEDATE < '2020-01-01'
and EMPLOYEE.DPTNAME = 'Sales'

Type 4. Incorrect filters (matching with wrong
DB columns) created for temporal values.

• How many iphones were sold since 2013-
10-01 in shops located in New York;
2013-10-01#date#date
Prediction: SELECT DISTINCT
sum(DISTINCT T1.quantity) FROM
sales_details AS T1 JOIN products AS
T2 ON T1.product_id = T2.product_id
JOIN stock AS T15 ON T2.product_id =
T15.product_id JOIN shops AS T3 ON
T15.shop_id = T3.shop_id JOIN sales
AS T4 ON T3.shop_id = T4.shop_id
WHERE T2.type = '2013-10-01' and
T3.address = '2013-10-01' and
T4.date = '2013-10-01'
Actual: select distinct
sum(T3.QUANTITY) from SHOPS AS
T1 JOIN SALES AS T2 on T1.SHOP_ID =
T2.SHOP_ID JOIN SALES_DETAILS AS T3
on T2.SALES_ID = T3.SALES_ID JOIN
PRODUCTS AS T4 on T3.PRODUCT_ID
= T4.PRODUCT_ID where T2.DATE >=
'2013-10-01' and T4.TYPE = 'IPHONE'
and T1.ADDRESS = 'New York'

7 Conclusions and Future Work

In this paper, we attempt to tackle the temporal as-
pect in NLIDB. This is a practical and challenging
topic in real-world applications for which there are
not many studies. Being motivated by the necessity
and lack of available dataset for temporal ques-
tions, we created the new dataset TempQ4NLIDB.
We also experimented with two SOTA models in
NLIDB and show that they benefit from our dataset
for better learning temporal questions. In future, we
will increase the size of our dataset and expand dif-
ferent types of temporal questions (e.g. implicit).
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