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Abstract

Automating updates to machine learning sys-
tems is an important but understudied chal-
lenge in AutoML. The high model variance
of many cutting-edge deep learning architec-
tures means that retraining a model provides
no guarantee of accurate inference on all sam-
ple types. To address this concern, we present
Automated Data-Shape Stratified Model Up-
dates (ADSMU), a novel framework that relies
on iterative model building coupled with data-
shape stratified model testing and improvement.
Using ADSMU, we observed a 26% (relative)
improvement in accuracy for new model use
cases on a large-scale NLU system, compared
to a naive (manually) retrained baseline and
current cutting-edge methods.

1 Introduction

Research in automated machine learning, includ-
ing Auto ML and Auto AI, has primarily focused
on automating the steps between data preparation
and creating a purpose-relevant machine learn-
ing model, which can include choosing model ar-
chitecture, tuning hyperparameters, and data pre-
processing (Truong et al., 2019; Feurer et al., 2020;
He et al., 2021).

However, in production machine learning sys-
tems, there is an equally important task of automat-
ing the maintenance and updates of existing models
currently in use. This task embodies two essen-
tial requirements: (i) sufficiently covering new use
cases; and (ii) not regressing already working use
cases.

In academic literature, there exist a range of
methods to meet these requirements, including
Bayesian approaches (Kirk, 2017; Theodoridis,
2015), mixture of experts models (Yuksel et al.,
2012; Shazeer et al., 2017), finetuning (Käding
et al., 2016; Finn et al., 2017; Yu et al., 2020), and
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training data selection (Moore and Lewis, 2010;
Axelrod et al., 2011; Iyer and Bilmes, 2013). How-
ever, production systems present unique challenges
that are not addressed by these methods.

First, in deep learning models, high model vari-
ance can result in changing interpretations across
model builds (Gal and Ghahramani, 2016; Belkin
et al., 2019; Pham et al., 2020). Because of this,
simply retraining a model with new training data
can result in uneven coverage across a new use case,
i.e. failing performance requirements for a subset
and, thus not providing sufficient coverage for the
new use case. Furthermore, retraining the model
for the new use case can shift formerly correct in-
terpretations, i.e. failing performance requirements
for previously existing use cases. A standard so-
lution to this challenge in the industry is repeated
manual retraining and failure analysis, requiring
weeks of modeler work for a simple model update.

Second, experimentation in production systems
is further hampered by the costs of changing model
architectures. Production systems can be in use
by hundreds of millions of customers and are sup-
ported by complex engineering systems. Changes
to these systems require extensive testing of both
inference and engineering performance. Because
of this, introducing architectural solutions to chal-
lenges of model variance or data diversity can be
prohibitively costly.

To address these challenges, we present
Automated Data-Shape Stratified Model Updates
(ADSMU). ADSMU builds and iteratively im-
proves models to optimize toward data-shape strati-
fied metrics. It can be applied on top of pre-existing
model architectures in any production system, mak-
ing it compatible with both legacy and cutting-edge
model architectures and methods for model updat-
ing.

Through stratified optimization, ADSMU en-
sures that models cover a diverse range of the data
space without requiring manual intervention. Auto-
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mated model updates using this framework resulted
in a 26% (relative) decrease in new user experi-
ences error rate compared to alternate model up-
date approaches (refer to Table 1). In addition, the
adoption of this AutoML framework corresponded
to a 94% timeline reduction in its application to
selected model retraining for supporting new NLU
use cases, compared to manual retraining.

In the following sections, we discuss related
work, examine the details of ADSMU and how
it can be applied to automated model updates, and
discuss the limitations of ADSMU.

2 Related Work

AI automation can encompass all the steps of build-
ing an ML model, including problem definition,
data collection, data cleaning, data coding, metric
selection, algorithm selection, parameter optimiza-
tion, post-processing, deployment, online evalua-
tion, and debugging (Feurer et al., 2020; He et al.,
2021). Nevertheless, these steps tend to focus on
the importance of building a first, robust model,
with the assumption that updating and retraining
can be done using an identical pipeline and frame-
work (Truong et al., 2019).

Research on optimized model updates, separate
from AutoML, has focused on two primary fields:
First, model architectures, such as finetuning (Käd-
ing et al., 2016; Finn et al., 2017; Yu et al., 2020)
or Bayesian approaches (Kirk, 2017; Theodoridis,
2015), and second, training data selection, which
encompasses work on submodular optimization
(Moore and Lewis, 2010; Axelrod et al., 2011;
Iyer and Bilmes, 2013), cross-entropy comparison
(Moore and Lewis, 2010), selection by proxy (Cole-
man et al., 2019), and active learning (Cohn et al.,
1996; Settles, 2009; Liu et al., 2021).

Many of these methods are premised on devel-
oping rich training data that performs well across
feature spaces. However, despite this focus on data
diversity, performance is tested, measured, and im-
proved based on average performance across devel-
opment test sets. This inherently biases models to
perform well on the majority data type, allowing
more challenging or rarer test cases (corresponding
to newly launched user experiences) to fall through
the cracks.

3 Automated Data-Shape Stratified
Model Updating

ADSMU provides a framework for (1) automating
data stratification, (2) using this stratification for
model measurement, and (3) boosting performance
in failing stratification groups using model iteration.
We discuss an application of this method using an
iterative approach to model retraining, which is
compatible with any model architecture.

3.1 Data-shape Based Stratification
3.1.1 Stratification Methods
ADSMU requires the implementation of a strati-
fication “rule” that is used throughout the model
update process. This rule takes advantage of the la-
belled nature of training data and uses those labels
to split data up meaningfully. This can be done us-
ing various stratification methods, including exact
match, fuzzy match, or model-based.

Exact match stratification relies on holding one
part of the data constant and stratifying based
on other division areas. In the case of natu-
ral language understanding, this could rely on
utterance label shapes. For instance, the utter-
ances “{please: Other} {play: Other} {moana:
VideoName}” and “{please: Other} {play: Other}
{frozen: VideoName}” would have identical utter-
ance shapes and therefore, in a simplistic exact-
match setting, would be part of the same stratifica-
tion group.

Fuzzy match stratification relies on similar
manually-input heuristics but allows for more varia-
tion. In the case of natural language understanding,
this could be through matching slot trails rather
than labels, in which case “{play: Other} {moana:
VideoName}” and “{please: Other} {play: Other}
{frozen: VideoName}” could be part of the same
utterance shape.1

The final method of data stratification is model-
based. This uses unsupervised strategies to group
together training data in a meaningful way and en-
sures data is optimized within those groups. For
instance, a clustering method could be used on top
of sentence embeddings that would take into ac-
count both content and syntax, placing “please play
Moana” and “might you play Frozen” in Cluster

1Both of the above methods require modeler insight to
determine principled stratification heuristics, but this should
depend on the use case. In one use case, stratifying based
on entity content could be more valuable (with “Moana” and
“Frozen” being the meaningful inputs), while in others, the
semantic shape might matter more.
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A and “it would be fantastic if you played Moana”
and “I would really appreciate if you played Frozen”
in Cluster B due to different carrier phrase struc-
tures i.e. the model learns to differentiate between
two possible classes of carrier phrases for slotting
in a named entity recognition task. While this
method has the benefit of relying less on labels
and manual input, it has the potential to introduce
more noise into the modeling process.

3.1.2 Measuring Stratified Performance
Once established, these stratification groups be-
come the foundation for future modeling and opti-
mization.

During model training, model performance is
not judged by a single accuracy metric but rather as
an average of the performance of each of the strat-
ification groups. This ensures each stratification
group is equally weighted and under-performance
in a less common test set is not overlooked.

In other words, traditional approaches measure
performance as x̄ = 1

n(
∑n

i=1 xi) where n is the
number of test cases and xi is a binary or continu-
ous success metric for observation i.

However, we propose a measurement method
that equally weights each stratification group, re-
gardless of the number of observations within it:

x̄ =
1

L
(

L∑
h=1

x̄h) (1)

where L is the number of stratum and x̄h is the
average of the binary or continuous success metric
for stratification group h.2

3.1.3 Resolving Stratification Group Failures
The final area in which stratification is applied
is failure resolution. When a model shows fail-
ures in a stratification group, it adds synthetically-
generated training data to improve performance in
that stratification group.

This data is generated based on the user-defined
heuristic for stratification. For instance, in an ex-
act match example where the semantic shape is
“play|Other TOKEN|VideoName” the system can
generate fill-in-the-blank data for VideoName, ei-
ther resampling from pre-existing training data (e.g.
finding all VideoName instances and using that as

2There is a range of potential extensions to these mea-
surement metrics. For instance, semantic groups could be
weighted based on modeler-defined heuristics, such as pre-
dicted popularity. Alternately, other metrics, such as harmonic
mean, could be used to calculate semantic group performance.

a catalog) or alternately using a user-provided cata-
log for data regeneration.3

3.2 Integration into Automated Model
Updates

In this section, we discuss one method for integrat-
ing stratification groups into an end-to-end model
update pipeline, following the steps indicated in
Figure 1 and addressed in more detail below.
1. The user provides updated data. The user
inputs data to be added and iterated on top of a
pre-existing model and dataset.
2. The system builds a stratified synthetic data
pool. The AI system ingests the user-provided
data and splits it using a pre-defined stratification
method (see Section 3.1.1).4

3. Training data addition and model buiding.
An initial amount of training data is added.5 Model
is then trained agnostic to architectures, hyperpa-
rameters, and loss functions.
4. Results of model training evaluated. The
model results are evaluated on each of the strati-
fication groups. Note that while the system may
have added varying amounts of training data from
different stratification groups, every stratification
group is tested, and test performance is weighted
equally.
5. Data addition for supporting failing stratifi-
cation groups. If a stratification group is underper-
forming, more data is added to support this failing
shape using methods discussed in Section 3.1.3.

Steps 3-5 are then repeated until net perfor-
mance, measured by the methods discussed in Sec-
tion 3.1.2, reaches an acceptable level or, alter-
nately, a preset maximum number of iterations is
reached.

3.3 Experimental Setup

We examine the impact of the ADSMU frame-
work applied to a machine learning task that mim-
ics a production-scale system and compare its re-
sults with other standard model update approaches.

3This data could also be created using cutting-edge, model-
based synthetic generation methods (Wan et al., 2017; Zhang
et al., 2019). As with model-generated semantic groups, the
additional value of these methods must be balanced against
the noise and lack of precision introduced by model-generated
data.

4This step can also include data generation or supplemen-
tation to increase the data size if necessary.

5This can be naive (equal amounts across stratification
groups) or more principled (using model-based training data
selection methods, e.g. Moore and Lewis (2010); Axelrod
et al. (2011); Iyer and Bilmes (2013)).
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Figure 1: Exemplar integration of ADSMU in a model retraining pipeline. Data shape stratification is used for model
performance measurement and improvement. Steps 3-5 are performed in iteration to boost model performance on
weak stratification groups.

Experiment Data Model Overall New Use Case
Selection Training Accuracy Change Accuracy Change

(1, Baseline) Naive Naive 0% 0%
(2) Naive Finetuning 1% -2%
(3) Submodular Naive 0.6% 0.1%
(4) Submodular Finetuning 1.5% -0.5%
(5) ADSMU ADSMU 1% 26%
(6) ADSMU + Submodular ADSMU 1.5% 28%

Table 1: Results from experimentation on experimental domain, intent, and named entity recognition tasks. Results
reported are overall accuracy across classification tasks based on percent improvement from experiment (1, Baseline).
ADSMU results used three model iterations.

Our experiments focused on updating a two-stage
model for domain classification (DC) and a joint
intent classification (IC) and named entity recog-
nition (NER) task. For conducting experiments,
we chose a deep bidirectional language model ar-
chitecture based on their established success on
several NLP tasks (Peters et al., 2018). The pre-
existing training data (user data + synthetic data;
user data used was already preprocessed for de-
identification) proxied that of a large and com-
plex production system and represented utterances
across multiple domains and intents. We compare
ADSMU to other model update approaches (Ta-
ble 1) using a single model update task, wherein
the model update was performed in a single pre-
existing domain and introduced one new intent and
new slots. We used exact match stratification to
create 142 stratification groups for the training data
and measured performance using the method from
Equation (1). We set a goal of 95% accuracy for
stratification groups, meaning that more training
data was added only when groups did not meet that
bar. This accuracy threshold is an experimental
variable and can be tuned based on the trade-off
between performance requirements and training
data volume because error falls off as a power of
the training data volume (Sorscher et al., 2022).
Stratification group failures were generated using
the exact match heuristic resampling from a user-
provided catalog. All model update approaches
used comparable amounts of training data. For pur-

poses of scale estimation, ADSMU started with
training data measuring 0.004% of the pre-existing
training data (in-domain and out-of-domain data),
with each iteration (step 3-5 in Figure 2) adding
more data for the failing stratification groups. The
total utterances used during end-to-end ADSMU
measured 0.008% of all the pre-existing training
data.

We compared ADSMU to a naive retrained base-
line and two common model refresh methods– sub-
modular optimization and finetuning. The baseline
model update was performed by an expert modeler
by manual training data sampling to support the
new intent in a pre-existing domain. To implement
submodular optimization, we used methods pre-
sented in Schreiber et al. (2020); specifically, the
implementation of the feature-based optimization
method of Wei et al. (2014). This is based on a
generalized feature-based function:

f(X) = ΣD
d=1ϕ(Σ

N
i=1Xi,d) (2)

For the optimizer, we used an approximate lazy
greedy algorithm (Schreiber et al., 2020). We
added the same amount of training data for the
naive baseline, ADSMU and submodular optimiza-
tion. For comparison with finetuning, we froze the
weights of the encoder layers and retrained the de-
coder to learn the new intent category. We retrained
for 35% of the epochs of the baseline/ADSMU
model.
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Figure 2: Comparison of manual model update vs. ADSMU. We obtained best model for the manual update after 14
iterations, and after 9 iterations for the ADSMU. Each manual iteration involved in-depth failure analysis and data
addition for failure resolution by an expert modeler. Figure shows error rate (range: 0 to 1).

3.4 Results

For experiments in section 3.3, we report results
based on percent improvement from current per-
formance (baseline) based on overall accuracy
across the three classification tasks (domain, intent,
named entity recognition). While we only com-
pared ADSMU to other approaches using a single
model update, we repeated use of ADSMU for sev-
eral other model building exercises that mimicked
large-scale NLU production systems and obtained
similar robust results. The results can be found in
Table 1.

We find that finetuning performs slightly better
overall than a naive retrained baseline but worse on
new use cases. Submodular optimization combined
with finetuning presents similar underperformance
issues on new model use cases, though it slightly
outperforms baseline when combined with a full re-
training. ADSMU shows marked improvements in
new use case accuracy compared with a naive base-
line and slight improvements in overall accuracy.
ADSMU combined with submodular optimization
shows even more significant gains on overall and
new use case accuracy, highlighting the potential
to combine ADSMU with other data selection and
model retraining approaches.

Additionally, we provide a specific exemplar
case, wherein we compared iteration-level perfor-
mance of model update performed by an expert
modeler possessing domain knowledge against the

ADSMU for a spoken language understanding use
case (Sarikaya et al., 2016) (same model and task as
in section 3.3). This model update was performed
in a single pre-existing domain and across multi-
ple pre-existing intents but with new slots (Figure
2). The stop-criteria (best model) for the manual
development work and the ADSMU iterations re-
quired: a) no regression of the pre-existing use
cases; and b) less than 5% error rate for domain
classification and intent and slot recognition for
the new use case. To support the new use case, the
expert modeler added training data measuring 0.5%
in total of the pre-existing in-domain training data,
and the ADSMU added data measuring 0.83% for
obtaining the best model. The ADSMU converged
faster than the manual model update process and
performed better for both the domain classification
and joint intent and named entity recognition task.
Overall, the best model for ADSMU performed
0.8% better than the model provided by the expert
modeler. ADSMU showed a relatively 24% lower
error rate than the modeler model for the new use
case. The iteration-level error rates (range: 0-1) for
the new use case (across various intents) are shown
in Figure 2.

The key to contextualizing these results is an
analysis on a second axis – modeler cost. Accuracy
results are compared against a single naive model
rebuild baseline. Yet in practice, modelers can in-
vest time to improve model accuracy through mul-
tiple rebuilds, offline testing, and tweaking training
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data. Comparison of ADSMU to manual develop-
ment represented a 94% timeline decrease in model
updates from months to days.

4 Conclusions and Next Steps

ADSMU presents a framework for using strati-
fied testing and measurement to iteratively improve
models in the setting of automated model updates.
This highlights the need that focuses on automat-
ing model creation while largely ignoring the chal-
lenges associated with automated model refresh
processes (Truong et al., 2019; Feurer et al., 2020;
He et al., 2021).

One key extension of this approach is applica-
tions that remove the need for model iteration and
improve performance within stratified sub-groups
in a single model build. For instance, optimizing
on stratified loss functions might help ensure that
models cover diverse use cases in a more consis-
tent manner. More simplistically, a model could
have training data added incrementally in between
epochs based on weaker performing stratification
groups.

5 Limitations

There are three key limitations to this approach.
First, the reliance on user-defined stratification
groups requires a certain degree of domain knowl-
edge. Second, this framework is best suited to use
with high-variance model architectures, since these
are the most likely to show variable performance
across data types and model builds. Finally, the re-
liance on iterations imposes a higher computational
cost than a single model rebuild.
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